分布式图分析的二维均衡分区和高效缓存

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Parallel and Distributed Systems Pub Date : 2024-11-18 DOI:10.1109/TPDS.2024.3501292
Shuai Lin;Rui Wang;Yongkun Li;Yinlong Xu;John C. S. Lui
{"title":"分布式图分析的二维均衡分区和高效缓存","authors":"Shuai Lin;Rui Wang;Yongkun Li;Yinlong Xu;John C. S. Lui","doi":"10.1109/TPDS.2024.3501292","DOIUrl":null,"url":null,"abstract":"Distributed graph analysis usually partitions a large graph into multiple small-sized subgraphs and distributes them into a cluster of machines for computing. Therefore, graph partitioning plays a crucial role in distributed graph analysis. However, the widely used existing graph partitioning schemes balance only in one dimension (number of edges or vertices) or incur a large number of edge cuts, so they degrade the performance of distributed graph analysis. In this article, we propose a novel graph partition scheme BPart and two enhanced algorithms BPart-C and BPart-S to achieve a balanced partition for both vertices and edges, and also reduce the number of edge cuts. Besides, we also propose a neighbor-aware caching scheme to further reduce the number of edge cuts so as to improve the efficiency of distributed graph analysis. Our experimental results show that BPart-C and BPart-S can achieve a better balance in both dimensions (the number of vertices and edges), and meanwhile reducing the number of edge cuts, compared to multiple existing graph partitioning algorithms, i.e., Chunk-V, Chunk-E, Fennel, and Hash. We also integrate these partitioning algorithms into two popular distributed graph systems, KnightKing and Gemini, to validate their impact on graph analysis efficiency. Results show that both BPart-C and BPart-S can significantly reduce the total running time of various graph applications by up to 60% and 70%, respectively. In addition, the neighbor-aware caching scheme can further improve the performance by up to 24%.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 2","pages":"133-149"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Balanced Partitioning and Efficient Caching for Distributed Graph Analysis\",\"authors\":\"Shuai Lin;Rui Wang;Yongkun Li;Yinlong Xu;John C. S. Lui\",\"doi\":\"10.1109/TPDS.2024.3501292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed graph analysis usually partitions a large graph into multiple small-sized subgraphs and distributes them into a cluster of machines for computing. Therefore, graph partitioning plays a crucial role in distributed graph analysis. However, the widely used existing graph partitioning schemes balance only in one dimension (number of edges or vertices) or incur a large number of edge cuts, so they degrade the performance of distributed graph analysis. In this article, we propose a novel graph partition scheme BPart and two enhanced algorithms BPart-C and BPart-S to achieve a balanced partition for both vertices and edges, and also reduce the number of edge cuts. Besides, we also propose a neighbor-aware caching scheme to further reduce the number of edge cuts so as to improve the efficiency of distributed graph analysis. Our experimental results show that BPart-C and BPart-S can achieve a better balance in both dimensions (the number of vertices and edges), and meanwhile reducing the number of edge cuts, compared to multiple existing graph partitioning algorithms, i.e., Chunk-V, Chunk-E, Fennel, and Hash. We also integrate these partitioning algorithms into two popular distributed graph systems, KnightKing and Gemini, to validate their impact on graph analysis efficiency. Results show that both BPart-C and BPart-S can significantly reduce the total running time of various graph applications by up to 60% and 70%, respectively. In addition, the neighbor-aware caching scheme can further improve the performance by up to 24%.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 2\",\"pages\":\"133-149\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756620/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10756620/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

分布式图分析通常将一个大的图划分为多个小的子图,并将它们分布到一个机器集群中进行计算。因此,图划分在分布式图分析中起着至关重要的作用。然而,现有广泛使用的图划分方案只能在一维(边数或顶点数)上进行平衡,或者会产生大量的切边,从而降低了分布式图分析的性能。本文提出了一种新的图划分方案BPart和两种增强算法BPart- c和BPart- s,以实现顶点和边的平衡划分,并减少了边的切割次数。此外,我们还提出了一种邻居感知的缓存方案,以进一步减少割边次数,从而提高分布式图分析的效率。我们的实验结果表明,与现有的多种图划分算法(Chunk-V、Chunk-E、Fennel和Hash)相比,BPart-C和BPart-S在两个维度(顶点和边的数量)上实现了更好的平衡,同时减少了切边的次数。我们还将这些划分算法集成到两个流行的分布式图系统中,KnightKing和Gemini,以验证它们对图分析效率的影响。结果表明,BPart-C和BPart-S都能显著减少各种图形应用程序的总运行时间,分别减少60%和70%。此外,邻居感知缓存方案可以进一步提高性能,最高可达24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-Dimensional Balanced Partitioning and Efficient Caching for Distributed Graph Analysis
Distributed graph analysis usually partitions a large graph into multiple small-sized subgraphs and distributes them into a cluster of machines for computing. Therefore, graph partitioning plays a crucial role in distributed graph analysis. However, the widely used existing graph partitioning schemes balance only in one dimension (number of edges or vertices) or incur a large number of edge cuts, so they degrade the performance of distributed graph analysis. In this article, we propose a novel graph partition scheme BPart and two enhanced algorithms BPart-C and BPart-S to achieve a balanced partition for both vertices and edges, and also reduce the number of edge cuts. Besides, we also propose a neighbor-aware caching scheme to further reduce the number of edge cuts so as to improve the efficiency of distributed graph analysis. Our experimental results show that BPart-C and BPart-S can achieve a better balance in both dimensions (the number of vertices and edges), and meanwhile reducing the number of edge cuts, compared to multiple existing graph partitioning algorithms, i.e., Chunk-V, Chunk-E, Fennel, and Hash. We also integrate these partitioning algorithms into two popular distributed graph systems, KnightKing and Gemini, to validate their impact on graph analysis efficiency. Results show that both BPart-C and BPart-S can significantly reduce the total running time of various graph applications by up to 60% and 70%, respectively. In addition, the neighbor-aware caching scheme can further improve the performance by up to 24%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
期刊最新文献
2024 Reviewers List* HpT: Hybrid Acceleration of Spatio-Temporal Attention Model Training on Heterogeneous Manycore Architectures Sparrow: Expediting Smart Contract Execution for Blockchain Sharding via Inter-Shard Caching CAT: Cellular Automata on Tensor Cores UMPIPE: Unequal Microbatches-Based Pipeline Parallelism for Deep Neural Network Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1