利用狐尾花叶病毒介导的sgRNA传递快速高效地编辑高粱植物基因组

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2024-12-11 DOI:10.1111/tpj.17196
Can Baysal, Albert P. Kausch, Jon P. Cody, Fredy Altpeter, Daniel F. Voytas
{"title":"利用狐尾花叶病毒介导的sgRNA传递快速高效地编辑高粱植物基因组","authors":"Can Baysal,&nbsp;Albert P. Kausch,&nbsp;Jon P. Cody,&nbsp;Fredy Altpeter,&nbsp;Daniel F. Voytas","doi":"10.1111/tpj.17196","DOIUrl":null,"url":null,"abstract":"<p>The requirement of <i>in vitro</i> tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for <i>in planta</i> delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in <i>Sorghum bicolor</i>. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting <i>Phytoene desaturase</i> (<i>PDS</i>), <i>Magnesium-chelatase subunit I</i> (<i>MgCh</i>), <i>4-hydroxy-3-methylbut-2-enyl diphosphate reductase</i>, orthologs of maize <i>Lemon white1</i> (<i>Lw1</i>) or <i>GFP</i>. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for <i>in planta</i> gene editing and functional genomics studies in sorghum.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 2","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery\",\"authors\":\"Can Baysal,&nbsp;Albert P. Kausch,&nbsp;Jon P. Cody,&nbsp;Fredy Altpeter,&nbsp;Daniel F. Voytas\",\"doi\":\"10.1111/tpj.17196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The requirement of <i>in vitro</i> tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for <i>in planta</i> delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in <i>Sorghum bicolor</i>. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting <i>Phytoene desaturase</i> (<i>PDS</i>), <i>Magnesium-chelatase subunit I</i> (<i>MgCh</i>), <i>4-hydroxy-3-methylbut-2-enyl diphosphate reductase</i>, orthologs of maize <i>Lemon white1</i> (<i>Lw1</i>) or <i>GFP</i>. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for <i>in planta</i> gene editing and functional genomics studies in sorghum.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"121 2\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17196\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17196","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

体外组织培养对基因编辑试剂递送的要求限制了基因编辑在许多作物物种的商业相关品种中的应用。为了克服这一瓶颈,植物RNA病毒已被部署为在植物中传递重组RNA的多功能工具。病毒将单导rna (sgRNAs)传递到稳定表达CRISPR-associated (Cas)内切酶的转基因植物中,已成功地用于几种双子叶植物和少数单子叶植物的靶向诱变。迄今为止,这种方法在单子叶植物中的进展受到有效病毒载体的限制。我们设计了一套foxtail花叶病毒(FoMV)和大麦条纹花叶病毒(BSMV)载体,以传递荧光蛋白AmCyan来跟踪病毒在高粱双色中的感染和运动。我们进一步利用这些病毒将sgRNAs传递并表达到表达Cas9和绿色荧光蛋白(GFP)的转基因高粱品系上,靶向植物烯去饱和酶(PDS)、镁螯合酶亚基I (MgCh)、4-羟基-3-甲基-2-烯基二磷酸还原酶、玉米柠檬白1 (Lw1)或GFP的同源物。重组BSMV既不感染高粱,也不传递或表达AmCyan和sgrna。相比之下,重组FoMV在高粱植株中系统传播,诱导体细胞突变的频率高达60%。这种诱变导致了明显的表型变化,证明了FoMV在植物基因编辑和高粱功能基因组学研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery

The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
Cleavable donor-assisted CRISPR/Cas9 system significantly improves the efficiency of large DNA insertion in Physcomitrium patens To infinity and beyond: recent progress, bottlenecks, and potential of clonal seeds by apomixis SlASR3 mediates crosstalk between auxin and jasmonic acid signaling to regulate trichome formation in tomato Establishment and maintenance of embryogenic cell fate during microspore embryogenesis The complex I subunit B22 contains a LYR domain that is crucial for an interaction with the mitochondrial acyl carrier protein SDAP1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1