香豆素新衍生物的合成及其抑菌效果评价。

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL Future medicinal chemistry Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI:10.1080/17568919.2024.2437974
Basma Saad Baaiu, Nashwa M Saleh, Abdulrahman Faraj Alshref Aldirsi, Anhar Abdel-Aziem
{"title":"香豆素新衍生物的合成及其抑菌效果评价。","authors":"Basma Saad Baaiu, Nashwa M Saleh, Abdulrahman Faraj Alshref Aldirsi, Anhar Abdel-Aziem","doi":"10.1080/17568919.2024.2437974","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Developing new antimicrobial agents in response to the urgent challenge of antimicrobial resistance.</p><p><strong>Methods: </strong>Synthesis of the targeted coumarins, elucidation of their structures using spectroscopic tools, and investigation of their antimicrobial activity.</p><p><strong>Results: </strong>Coumarin-pyrazole <b>11</b> with CF<sub>3</sub> in the 3-position of the pyrazole ring displayed the lowest minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) with values of 1.95 and 15.6 µg/ml, respectively, against <i>Bacillus pumilis</i>. In addition, it exhibited the best inhibitory activity against <i>Saccharomyces cerevisiae</i> (MIC = 3.91 µg/ml) compared to the rest of the derivatives (7.81-62.5 µg/ml). Surprisingly, coumarin <b>14</b> with the S-CH<sub>3</sub> group had higher ability to inhibit the <i>Staphylococcus faecalis</i> strain with an MIC value of <b>1.95 µg/ml</b>, which is twice that of penicillin G (<b>MIC = 3.91 µg/ml</b>). At the same time, compounds <b>6</b>, <b>8</b>, <b>11</b>, <b>16</b>, and penicillin G showed similar activity with an MIC value of <b>3.91 µg/ml</b> against <i>Staphylococcus faecalis</i>. Also, the lowest MIC value (3.91 µg/ml) was obtained for S-CH<sub>3</sub> derivative <b>14</b> against <i>Enterobacter cloacae</i>. Coumarins <b>14</b> and 1,3,4-thiadiazine derivative <b>6</b> recorded the lowest MBC (15.6 µg/ml) against <i>Escherichia coli</i>.</p><p><strong>Conclusion: </strong>Finally, it can be concluded that some designed coumarins have a high potential to act as potent antimicrobial agents. Some of them displayed higher efficacy than or equal to the reference drug.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"9-18"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of new coumarin derivatives and assessment of their antimicrobial efficacy.\",\"authors\":\"Basma Saad Baaiu, Nashwa M Saleh, Abdulrahman Faraj Alshref Aldirsi, Anhar Abdel-Aziem\",\"doi\":\"10.1080/17568919.2024.2437974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Developing new antimicrobial agents in response to the urgent challenge of antimicrobial resistance.</p><p><strong>Methods: </strong>Synthesis of the targeted coumarins, elucidation of their structures using spectroscopic tools, and investigation of their antimicrobial activity.</p><p><strong>Results: </strong>Coumarin-pyrazole <b>11</b> with CF<sub>3</sub> in the 3-position of the pyrazole ring displayed the lowest minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) with values of 1.95 and 15.6 µg/ml, respectively, against <i>Bacillus pumilis</i>. In addition, it exhibited the best inhibitory activity against <i>Saccharomyces cerevisiae</i> (MIC = 3.91 µg/ml) compared to the rest of the derivatives (7.81-62.5 µg/ml). Surprisingly, coumarin <b>14</b> with the S-CH<sub>3</sub> group had higher ability to inhibit the <i>Staphylococcus faecalis</i> strain with an MIC value of <b>1.95 µg/ml</b>, which is twice that of penicillin G (<b>MIC = 3.91 µg/ml</b>). At the same time, compounds <b>6</b>, <b>8</b>, <b>11</b>, <b>16</b>, and penicillin G showed similar activity with an MIC value of <b>3.91 µg/ml</b> against <i>Staphylococcus faecalis</i>. Also, the lowest MIC value (3.91 µg/ml) was obtained for S-CH<sub>3</sub> derivative <b>14</b> against <i>Enterobacter cloacae</i>. Coumarins <b>14</b> and 1,3,4-thiadiazine derivative <b>6</b> recorded the lowest MBC (15.6 µg/ml) against <i>Escherichia coli</i>.</p><p><strong>Conclusion: </strong>Finally, it can be concluded that some designed coumarins have a high potential to act as potent antimicrobial agents. Some of them displayed higher efficacy than or equal to the reference drug.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"9-18\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2437974\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2437974","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发新的抗微生物药物,以应对抗微生物药物耐药性的紧迫挑战。方法:合成目标香豆素,利用光谱学分析其结构,并对其抑菌活性进行研究。结果:吡唑环3位含有CF3的香豆素-吡唑11对小芽孢杆菌的最低抑菌浓度(mic)和最低杀菌浓度(MBCs)分别为1.95和15.6µg/ml。此外,其对酿酒酵母菌的抑制活性(MIC = 3.91µg/ml)优于其他衍生物(7.81 ~ 62.5µg/ml)。令人惊讶的是,S-CH3组香豆素14对粪葡萄球菌的抑制能力更高,MIC值为1.95µg/ml,是青霉素g (MIC = 3.91µg/ml)的两倍。同时,化合物6、8、11、16和青霉素G对粪葡萄球菌的MIC值均为3.91µG /ml。S-CH3衍生物14对阴沟肠杆菌的MIC值最低,为3.91µg/ml。香豆素14和1,3,4-噻二嗪衍生物6对大肠杆菌的MBC最低(15.6µg/ml)。结论:最后可以得出一些设计的香豆素具有很强的抗菌潜力。其中一些药物的疗效高于或等于对照药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of new coumarin derivatives and assessment of their antimicrobial efficacy.

Aim: Developing new antimicrobial agents in response to the urgent challenge of antimicrobial resistance.

Methods: Synthesis of the targeted coumarins, elucidation of their structures using spectroscopic tools, and investigation of their antimicrobial activity.

Results: Coumarin-pyrazole 11 with CF3 in the 3-position of the pyrazole ring displayed the lowest minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) with values of 1.95 and 15.6 µg/ml, respectively, against Bacillus pumilis. In addition, it exhibited the best inhibitory activity against Saccharomyces cerevisiae (MIC = 3.91 µg/ml) compared to the rest of the derivatives (7.81-62.5 µg/ml). Surprisingly, coumarin 14 with the S-CH3 group had higher ability to inhibit the Staphylococcus faecalis strain with an MIC value of 1.95 µg/ml, which is twice that of penicillin G (MIC = 3.91 µg/ml). At the same time, compounds 6, 8, 11, 16, and penicillin G showed similar activity with an MIC value of 3.91 µg/ml against Staphylococcus faecalis. Also, the lowest MIC value (3.91 µg/ml) was obtained for S-CH3 derivative 14 against Enterobacter cloacae. Coumarins 14 and 1,3,4-thiadiazine derivative 6 recorded the lowest MBC (15.6 µg/ml) against Escherichia coli.

Conclusion: Finally, it can be concluded that some designed coumarins have a high potential to act as potent antimicrobial agents. Some of them displayed higher efficacy than or equal to the reference drug.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
期刊最新文献
A comprehensive insight into naphthalimides as novel structural skeleton of multitargeting promising antibiotics. A call to develop tramadol enantiomer for overcoming the tramadol crisis by reducing addiction. Advancements in PROTAC-based therapies for neurodegenerative diseases. EGFR molecular degraders: preclinical successes and the road ahead. How does machine learning augment alchemical binding free energy calculations?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1