组织成熟过程中与年龄相关的声带细胞外基质组成、结构和生物力学的重塑。

IF 2.8 4区 医学 Q3 CELL BIOLOGY Connective Tissue Research Pub Date : 2024-11-01 Epub Date: 2024-12-12 DOI:10.1080/03008207.2024.2435364
Ryan M Friedman, Arielle S Breuninger, Matthew R Aronson, Elizabeth A Brown, Neil Patel, Lin Han, Karen B Zur, Riccardo Gottardi
{"title":"组织成熟过程中与年龄相关的声带细胞外基质组成、结构和生物力学的重塑。","authors":"Ryan M Friedman, Arielle S Breuninger, Matthew R Aronson, Elizabeth A Brown, Neil Patel, Lin Han, Karen B Zur, Riccardo Gottardi","doi":"10.1080/03008207.2024.2435364","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The vocal folds (VFs) are among the most mechanically active connective tissues, vibrating between 80 and 250 hz during speech. Overall VF function is determined by the composition and structure of their extracellular matrix (ECM). During tissue maturation, the VFs remodel from a monolayer of collagen fibers to a tri-layered structure, affecting tissue biomechanics. However, age-related VF ECM remodeling remains poorly understood since few studies have explored the proteins governing collagen fibrillogenesis or the non-collagenous ECM components critical for VF elasticity.</p><p><strong>Materials and methods: </strong>VFs from immature, sexually mature, and skeletally mature rats were evaluated by endoscopy, histology, and electron microscopy for cellular and biochemical composition, ECM organization, and proteoglycan distribution. Nanoindentation modulus was determined by atomic force microscopy.</p><p><strong>Results: </strong>Collagen fiber abundance, maturity, and alignment are low in immature rats but show an age-dependent increase during tissue maturation. Lumican and fibromodulin, which regulate early-stage collagen fibril formation, are distributed throughout the VFs, and their abundance decreases with age. Decorin, involved in collagen organization, is concentrated just beneath the epithelium and increases with age. Elastin levels increase during tissue maturation, but hyaluronic acid abundance and distribution remain consistent with age. VF nanoindentation modulus trends toward a decrease with age.</p><p><strong>Conclusion: </strong>This work identifies changes in VF ECM composition and organization during tissue maturation, focusing on proteins that regulate collagen fibrillogenesis, fiber assembly, and VF biomechanics. These findings may inform the development of pro-reparative therapies designed to influence collagen network structure and overall ECM dysregulation in a number of laryngeal pathologies.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"472-485"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-related remodeling of the vocal fold extracellular matrix composition, structure, and biomechanics during tissue maturation.\",\"authors\":\"Ryan M Friedman, Arielle S Breuninger, Matthew R Aronson, Elizabeth A Brown, Neil Patel, Lin Han, Karen B Zur, Riccardo Gottardi\",\"doi\":\"10.1080/03008207.2024.2435364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The vocal folds (VFs) are among the most mechanically active connective tissues, vibrating between 80 and 250 hz during speech. Overall VF function is determined by the composition and structure of their extracellular matrix (ECM). During tissue maturation, the VFs remodel from a monolayer of collagen fibers to a tri-layered structure, affecting tissue biomechanics. However, age-related VF ECM remodeling remains poorly understood since few studies have explored the proteins governing collagen fibrillogenesis or the non-collagenous ECM components critical for VF elasticity.</p><p><strong>Materials and methods: </strong>VFs from immature, sexually mature, and skeletally mature rats were evaluated by endoscopy, histology, and electron microscopy for cellular and biochemical composition, ECM organization, and proteoglycan distribution. Nanoindentation modulus was determined by atomic force microscopy.</p><p><strong>Results: </strong>Collagen fiber abundance, maturity, and alignment are low in immature rats but show an age-dependent increase during tissue maturation. Lumican and fibromodulin, which regulate early-stage collagen fibril formation, are distributed throughout the VFs, and their abundance decreases with age. Decorin, involved in collagen organization, is concentrated just beneath the epithelium and increases with age. Elastin levels increase during tissue maturation, but hyaluronic acid abundance and distribution remain consistent with age. VF nanoindentation modulus trends toward a decrease with age.</p><p><strong>Conclusion: </strong>This work identifies changes in VF ECM composition and organization during tissue maturation, focusing on proteins that regulate collagen fibrillogenesis, fiber assembly, and VF biomechanics. These findings may inform the development of pro-reparative therapies designed to influence collagen network structure and overall ECM dysregulation in a number of laryngeal pathologies.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"472-485\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2024.2435364\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2024.2435364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:声带(VFs)是机械上最活跃的结缔组织之一,在说话时振动在80到250赫兹之间。VF的整体功能是由细胞外基质(ECM)的组成和结构决定的。在组织成熟过程中,VFs从单层胶原纤维重构为三层结构,影响组织生物力学。然而,与年龄相关的VF ECM重塑仍然知之甚少,因为很少有研究探索控制胶原纤维形成的蛋白质或对VF弹性至关重要的非胶原ECM成分。材料和方法:通过内窥镜、组织学和电子显微镜对未成熟、性成熟和骨骼成熟大鼠的VFs进行细胞和生化组成、ECM组织和蛋白聚糖分布的评估。采用原子力显微镜测定纳米压痕模量。结果:胶原纤维丰度、成熟度和排列在未成熟大鼠中较低,但在组织成熟过程中表现出年龄依赖性增加。调节早期胶原纤维形成的Lumican和纤维调节蛋白分布在整个VFs中,它们的丰度随着年龄的增长而降低。参与胶原组织的Decorin集中在上皮下,随着年龄的增长而增加。弹性蛋白水平在组织成熟过程中增加,但透明质酸的丰度和分布与年龄保持一致。VF纳米压痕模量随龄期的增加呈下降趋势。结论:本研究确定了组织成熟过程中VF ECM组成和组织的变化,重点关注了调节胶原纤维形成、纤维组装和VF生物力学的蛋白质。这些发现可能为促进修复疗法的发展提供信息,这些疗法旨在影响许多喉部病变中的胶原网络结构和整体ECM失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Age-related remodeling of the vocal fold extracellular matrix composition, structure, and biomechanics during tissue maturation.

Purpose: The vocal folds (VFs) are among the most mechanically active connective tissues, vibrating between 80 and 250 hz during speech. Overall VF function is determined by the composition and structure of their extracellular matrix (ECM). During tissue maturation, the VFs remodel from a monolayer of collagen fibers to a tri-layered structure, affecting tissue biomechanics. However, age-related VF ECM remodeling remains poorly understood since few studies have explored the proteins governing collagen fibrillogenesis or the non-collagenous ECM components critical for VF elasticity.

Materials and methods: VFs from immature, sexually mature, and skeletally mature rats were evaluated by endoscopy, histology, and electron microscopy for cellular and biochemical composition, ECM organization, and proteoglycan distribution. Nanoindentation modulus was determined by atomic force microscopy.

Results: Collagen fiber abundance, maturity, and alignment are low in immature rats but show an age-dependent increase during tissue maturation. Lumican and fibromodulin, which regulate early-stage collagen fibril formation, are distributed throughout the VFs, and their abundance decreases with age. Decorin, involved in collagen organization, is concentrated just beneath the epithelium and increases with age. Elastin levels increase during tissue maturation, but hyaluronic acid abundance and distribution remain consistent with age. VF nanoindentation modulus trends toward a decrease with age.

Conclusion: This work identifies changes in VF ECM composition and organization during tissue maturation, focusing on proteins that regulate collagen fibrillogenesis, fiber assembly, and VF biomechanics. These findings may inform the development of pro-reparative therapies designed to influence collagen network structure and overall ECM dysregulation in a number of laryngeal pathologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
期刊最新文献
Effects of intramuscular administration of Platelet-Rich Plasma on denervated muscle after peripheral nerve injury. α-Ketoglutarate promotes autophagic activity under a peri-implant condition to enhance osseointegration of dental implant in rats with osteoporosis. High-fat diet-induced obesity exacerbated collagenase-induced tendon injury with upregulation of interleukin-1beta and matrix metalloproteinase-1. NEDD4L affects stability of the CHEK2/TP53 axis through ubiquitination modification to enhance osteogenic differentiation of periodontal ligament stem cells. Acute tear versus chronic-degenerated rotator cuff pathologies are associated with divergent tendon metabolite profiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1