青蛙进化保守性和创新的遗传基础的基因组学见解。

IF 3.5 1区 生物学 Q1 ZOOLOGY Integrative zoology Pub Date : 2024-12-11 DOI:10.1111/1749-4877.12931
Bin Zuo, Rongmei Chen, Xiaolong Tang, Yong Shao, Xiaolong Liu, Lotanna M Nneji, Yanbo Sun
{"title":"青蛙进化保守性和创新的遗传基础的基因组学见解。","authors":"Bin Zuo, Rongmei Chen, Xiaolong Tang, Yong Shao, Xiaolong Liu, Lotanna M Nneji, Yanbo Sun","doi":"10.1111/1749-4877.12931","DOIUrl":null,"url":null,"abstract":"<p><p>Examining closely related species evolving in similar environments offers valuable insights into the mechanisms driving phylogenetic conservatism and evolutionary lability. This can elucidate the intricate relationship between inheritance and environmental factors. Nonetheless, the precise genomic dynamics and molecular underpinnings of this process remain enigmatic. This study explores the evolutionary conservatism and adaptation exhibited by two closely related high-altitude frog species: Nanorana parkeri and N. pleskei. We assembled a high-quality genome for Tibetan N. pleskei and compared it to the genomes of N. parkeri and their lowland relatives. Our findings reveal that these two Tibetan frog species diverged approximately 16.6 million years ago, pointing to a possible ancestral colonization of high-elevation habitats. Following this colonization, significant adaptive evolution occurred in both coding and non-coding regions of the ancestral lineage. This evolution led to notable phenotypic alterations, as evidenced by the reduced body size. Also, due to purifying selection, most ancestral adaptive features persisted in descendant species, indicating a strong element of evolutionary conservatism. However, descendant species evolved novel adaptations to exacerbated environmental challenges in the Tibet Plateau, mainly related to hypoxia response. Furthermore, our analysis underscores the critical role of regulatory variations in descendant adaptive evolution. Notably, hub genes in networks, such as EGLN3, accumulated more variations in regulatory regions as they were transmitted from ancestors to descendants. In sum, our study sheds light on the profound and lasting impact of genetic heritage on species' adaptive evolution.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Insights Into Genetic Basis of Evolutionary Conservatism and Innovation in Frogs.\",\"authors\":\"Bin Zuo, Rongmei Chen, Xiaolong Tang, Yong Shao, Xiaolong Liu, Lotanna M Nneji, Yanbo Sun\",\"doi\":\"10.1111/1749-4877.12931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Examining closely related species evolving in similar environments offers valuable insights into the mechanisms driving phylogenetic conservatism and evolutionary lability. This can elucidate the intricate relationship between inheritance and environmental factors. Nonetheless, the precise genomic dynamics and molecular underpinnings of this process remain enigmatic. This study explores the evolutionary conservatism and adaptation exhibited by two closely related high-altitude frog species: Nanorana parkeri and N. pleskei. We assembled a high-quality genome for Tibetan N. pleskei and compared it to the genomes of N. parkeri and their lowland relatives. Our findings reveal that these two Tibetan frog species diverged approximately 16.6 million years ago, pointing to a possible ancestral colonization of high-elevation habitats. Following this colonization, significant adaptive evolution occurred in both coding and non-coding regions of the ancestral lineage. This evolution led to notable phenotypic alterations, as evidenced by the reduced body size. Also, due to purifying selection, most ancestral adaptive features persisted in descendant species, indicating a strong element of evolutionary conservatism. However, descendant species evolved novel adaptations to exacerbated environmental challenges in the Tibet Plateau, mainly related to hypoxia response. Furthermore, our analysis underscores the critical role of regulatory variations in descendant adaptive evolution. Notably, hub genes in networks, such as EGLN3, accumulated more variations in regulatory regions as they were transmitted from ancestors to descendants. In sum, our study sheds light on the profound and lasting impact of genetic heritage on species' adaptive evolution.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12931\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12931","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究在相似环境中进化的密切相关物种,为了解驱动系统发育保守性和进化不稳定性的机制提供了有价值的见解。这可以解释遗传与环境因素之间错综复杂的关系。尽管如此,这一过程的精确基因组动力学和分子基础仍然是个谜。本研究探讨了两种相近的高原蛙种:Nanorana parkeri和N. pleskei所表现出的进化保守性和适应性。我们组装了西藏N. pleskei的高质量基因组,并将其与N. parkeri及其低地近亲的基因组进行了比较。我们的研究结果表明,这两种西藏蛙大约在1660万年前分化,这表明它们的祖先可能在高海拔栖息地定居。在这种殖民化之后,在祖先谱系的编码区和非编码区都发生了显著的适应性进化。这种进化导致了显著的表型改变,正如缩小的体型所证明的那样。此外,由于净化选择,大多数祖先的适应特征在后代物种中持续存在,表明进化保守主义的强烈元素。然而,在青藏高原,后代物种进化出了新的适应环境挑战的能力,主要与缺氧反应有关。此外,我们的分析强调了调控变异在后代适应性进化中的关键作用。值得注意的是,网络中的枢纽基因,如EGLN3,在从祖先传给后代的过程中,在调控区域积累了更多的变异。总之,我们的研究揭示了遗传遗产对物种适应进化的深刻而持久的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genomic Insights Into Genetic Basis of Evolutionary Conservatism and Innovation in Frogs.

Examining closely related species evolving in similar environments offers valuable insights into the mechanisms driving phylogenetic conservatism and evolutionary lability. This can elucidate the intricate relationship between inheritance and environmental factors. Nonetheless, the precise genomic dynamics and molecular underpinnings of this process remain enigmatic. This study explores the evolutionary conservatism and adaptation exhibited by two closely related high-altitude frog species: Nanorana parkeri and N. pleskei. We assembled a high-quality genome for Tibetan N. pleskei and compared it to the genomes of N. parkeri and their lowland relatives. Our findings reveal that these two Tibetan frog species diverged approximately 16.6 million years ago, pointing to a possible ancestral colonization of high-elevation habitats. Following this colonization, significant adaptive evolution occurred in both coding and non-coding regions of the ancestral lineage. This evolution led to notable phenotypic alterations, as evidenced by the reduced body size. Also, due to purifying selection, most ancestral adaptive features persisted in descendant species, indicating a strong element of evolutionary conservatism. However, descendant species evolved novel adaptations to exacerbated environmental challenges in the Tibet Plateau, mainly related to hypoxia response. Furthermore, our analysis underscores the critical role of regulatory variations in descendant adaptive evolution. Notably, hub genes in networks, such as EGLN3, accumulated more variations in regulatory regions as they were transmitted from ancestors to descendants. In sum, our study sheds light on the profound and lasting impact of genetic heritage on species' adaptive evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
12.10%
发文量
81
审稿时长
>12 weeks
期刊介绍: The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society. Integrative topics of greatest interest to INZ include: (1) Animals & climate change (2) Animals & pollution (3) Animals & infectious diseases (4) Animals & biological invasions (5) Animal-plant interactions (6) Zoogeography & paleontology (7) Neurons, genes & behavior (8) Molecular ecology & evolution (9) Physiological adaptations
期刊最新文献
Can Fecal T3 Metabolite Level Fluctuations in European Roe Deer (Capreolus capreolus) Give Insights on Body Condition and Thermal Stress? VI International Conference on Malaria and Other Blood Parasites of Wildlife and the III International Symposium of the Wildlife Diseases Research Network. Better Transcriptomic Stability and Broader Transcriptomic Thermal Response Range Drive the Greater Thermal Tolerance in a Global Invasive Turtle Relative to Native Turtle. Comparative Population Genetics of Two Alvinocaridid Shrimp Species in Chemosynthetic Ecosystems of the Western Pacific. Pleistocene Refugia Inferred from Molecular Evidence in a Forest-Dwelling Harvestman (Arachnida, Opiliones, Gonyleptidae) Support a Biogeographic Split in Subtropical Argentina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1