{"title":"心脏成像的深度学习:专注于心肌疾病:叙述综述。","authors":"Theodoros Tsampras , Theodora Karamanidou , Giorgos Papanastasiou , Thanos G. Stavropoulos","doi":"10.1016/j.hjc.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of computational technologies into cardiology has significantly advanced the diagnosis and management of cardiovascular diseases. Computational cardiology, particularly, through cardiovascular imaging and informatics, enables a precise diagnosis of myocardial diseases utilizing techniques such as echocardiography, cardiac magnetic resonance imaging, and computed tomography. Early-stage disease classification, especially in asymptomatic patients, benefits from these advancements, potentially altering disease progression and improving patient outcomes. Automatic segmentation of myocardial tissue using deep learning (DL) algorithms improves efficiency and consistency in analyzing large patient populations. Radiomic analysis can reveal subtle disease characteristics from medical images and can enhance disease detection, enable patient stratification, and facilitate monitoring of disease progression and treatment response. Radiomic biomarkers have already demonstrated high diagnostic accuracy in distinguishing myocardial pathologies and promise treatment individualization in cardiology, earlier disease detection, and disease monitoring. In this context, this narrative review explores the current state of the art in DL applications in medical imaging (CT, CMR, echocardiography, and SPECT), focusing on automatic segmentation, radiomic feature phenotyping, and prediction of myocardial diseases, while also discussing challenges in integration of DL models in clinical practice.</div></div>","PeriodicalId":55062,"journal":{"name":"Hellenic Journal of Cardiology","volume":"81 ","pages":"Pages 18-24"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for cardiac imaging: focus on myocardial diseases, a narrative review\",\"authors\":\"Theodoros Tsampras , Theodora Karamanidou , Giorgos Papanastasiou , Thanos G. Stavropoulos\",\"doi\":\"10.1016/j.hjc.2024.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of computational technologies into cardiology has significantly advanced the diagnosis and management of cardiovascular diseases. Computational cardiology, particularly, through cardiovascular imaging and informatics, enables a precise diagnosis of myocardial diseases utilizing techniques such as echocardiography, cardiac magnetic resonance imaging, and computed tomography. Early-stage disease classification, especially in asymptomatic patients, benefits from these advancements, potentially altering disease progression and improving patient outcomes. Automatic segmentation of myocardial tissue using deep learning (DL) algorithms improves efficiency and consistency in analyzing large patient populations. Radiomic analysis can reveal subtle disease characteristics from medical images and can enhance disease detection, enable patient stratification, and facilitate monitoring of disease progression and treatment response. Radiomic biomarkers have already demonstrated high diagnostic accuracy in distinguishing myocardial pathologies and promise treatment individualization in cardiology, earlier disease detection, and disease monitoring. In this context, this narrative review explores the current state of the art in DL applications in medical imaging (CT, CMR, echocardiography, and SPECT), focusing on automatic segmentation, radiomic feature phenotyping, and prediction of myocardial diseases, while also discussing challenges in integration of DL models in clinical practice.</div></div>\",\"PeriodicalId\":55062,\"journal\":{\"name\":\"Hellenic Journal of Cardiology\",\"volume\":\"81 \",\"pages\":\"Pages 18-24\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hellenic Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1109966624002616\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hellenic Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1109966624002616","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Deep learning for cardiac imaging: focus on myocardial diseases, a narrative review
The integration of computational technologies into cardiology has significantly advanced the diagnosis and management of cardiovascular diseases. Computational cardiology, particularly, through cardiovascular imaging and informatics, enables a precise diagnosis of myocardial diseases utilizing techniques such as echocardiography, cardiac magnetic resonance imaging, and computed tomography. Early-stage disease classification, especially in asymptomatic patients, benefits from these advancements, potentially altering disease progression and improving patient outcomes. Automatic segmentation of myocardial tissue using deep learning (DL) algorithms improves efficiency and consistency in analyzing large patient populations. Radiomic analysis can reveal subtle disease characteristics from medical images and can enhance disease detection, enable patient stratification, and facilitate monitoring of disease progression and treatment response. Radiomic biomarkers have already demonstrated high diagnostic accuracy in distinguishing myocardial pathologies and promise treatment individualization in cardiology, earlier disease detection, and disease monitoring. In this context, this narrative review explores the current state of the art in DL applications in medical imaging (CT, CMR, echocardiography, and SPECT), focusing on automatic segmentation, radiomic feature phenotyping, and prediction of myocardial diseases, while also discussing challenges in integration of DL models in clinical practice.
期刊介绍:
The Hellenic Journal of Cardiology (International Edition, ISSN 1109-9666) is the official journal of the Hellenic Society of Cardiology and aims to publish high-quality articles on all aspects of cardiovascular medicine. A primary goal is to publish in each issue a number of original articles related to clinical and basic research. Many of these will be accompanied by invited editorial comments.
Hot topics, such as molecular cardiology, and innovative cardiac imaging and electrophysiological mapping techniques, will appear frequently in the journal in the form of invited expert articles or special reports. The Editorial Committee also attaches great importance to subjects related to continuing medical education, the implementation of guidelines and cost effectiveness in cardiology.