揭示骨科医生对生成人工智能技术的看法和采用。

Journal of CME Pub Date : 2024-12-09 eCollection Date: 2024-01-01 DOI:10.1080/28338073.2024.2437330
Matthias Schmidt, Yasmin B Kafai, Adrian Heinze, Monica Ghidinelli
{"title":"揭示骨科医生对生成人工智能技术的看法和采用。","authors":"Matthias Schmidt, Yasmin B Kafai, Adrian Heinze, Monica Ghidinelli","doi":"10.1080/28338073.2024.2437330","DOIUrl":null,"url":null,"abstract":"<p><p>This mixed-methods study investigates the adoption of generative AI among orthopaedic surgeons, employing a Unified Theory of Acceptance and Use of Technology (UTAUT) based survey (<i>n</i> = 177) and follow-up interviews (<i>n</i> = 7). The research reveals varying levels of AI familiarity and usage patterns, with higher adoption in research and professional development compared to direct patient care. A significant generational divide in perceived ease of use highlights the need for tailored training approaches. Qualitative insights uncover barriers to adoption, including the need for more evidence-based support, as well as concerns about maintaining critical thinking skills. The study exposes a complex interplay of individual, technological, and organisational factors influencing AI adoption in orthopaedic surgery. The findings underscore the need for a nuanced approach to AI integration that considers the unique aspects of orthopaedic surgery and the diverse perspectives of surgeons at different career stages. This provides valuable insights for educational institutions and healthcare organisations in navigating the challenges and opportunities of AI adoption in specialised medical fields.</p>","PeriodicalId":73675,"journal":{"name":"Journal of CME","volume":"13 1","pages":"2437330"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632920/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unravelling Orthopaedic Surgeons' Perceptions and Adoption of Generative AI Technologies.\",\"authors\":\"Matthias Schmidt, Yasmin B Kafai, Adrian Heinze, Monica Ghidinelli\",\"doi\":\"10.1080/28338073.2024.2437330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This mixed-methods study investigates the adoption of generative AI among orthopaedic surgeons, employing a Unified Theory of Acceptance and Use of Technology (UTAUT) based survey (<i>n</i> = 177) and follow-up interviews (<i>n</i> = 7). The research reveals varying levels of AI familiarity and usage patterns, with higher adoption in research and professional development compared to direct patient care. A significant generational divide in perceived ease of use highlights the need for tailored training approaches. Qualitative insights uncover barriers to adoption, including the need for more evidence-based support, as well as concerns about maintaining critical thinking skills. The study exposes a complex interplay of individual, technological, and organisational factors influencing AI adoption in orthopaedic surgery. The findings underscore the need for a nuanced approach to AI integration that considers the unique aspects of orthopaedic surgery and the diverse perspectives of surgeons at different career stages. This provides valuable insights for educational institutions and healthcare organisations in navigating the challenges and opportunities of AI adoption in specialised medical fields.</p>\",\"PeriodicalId\":73675,\"journal\":{\"name\":\"Journal of CME\",\"volume\":\"13 1\",\"pages\":\"2437330\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CME\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/28338073.2024.2437330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CME","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/28338073.2024.2437330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项混合方法研究调查了骨科医生对生成式人工智能的采用情况,采用了基于技术接受和使用统一理论(UTAUT)的调查(n = 177)和随访访谈(n = 7)。该研究揭示了不同程度的人工智能熟悉度和使用模式,与直接患者护理相比,在研究和专业发展中采用的人工智能更高。在易用性方面存在明显的代际差异,这突出了量身定制培训方法的必要性。定性洞察揭示了采用的障碍,包括需要更多基于证据的支持,以及对保持批判性思维技能的关注。该研究揭示了影响人工智能在骨科手术中应用的个人、技术和组织因素之间复杂的相互作用。研究结果强调,需要一种细致入微的人工智能集成方法,考虑到骨科手术的独特方面和不同职业阶段外科医生的不同观点。这为教育机构和医疗机构在应对专业医疗领域采用人工智能的挑战和机遇方面提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unravelling Orthopaedic Surgeons' Perceptions and Adoption of Generative AI Technologies.

This mixed-methods study investigates the adoption of generative AI among orthopaedic surgeons, employing a Unified Theory of Acceptance and Use of Technology (UTAUT) based survey (n = 177) and follow-up interviews (n = 7). The research reveals varying levels of AI familiarity and usage patterns, with higher adoption in research and professional development compared to direct patient care. A significant generational divide in perceived ease of use highlights the need for tailored training approaches. Qualitative insights uncover barriers to adoption, including the need for more evidence-based support, as well as concerns about maintaining critical thinking skills. The study exposes a complex interplay of individual, technological, and organisational factors influencing AI adoption in orthopaedic surgery. The findings underscore the need for a nuanced approach to AI integration that considers the unique aspects of orthopaedic surgery and the diverse perspectives of surgeons at different career stages. This provides valuable insights for educational institutions and healthcare organisations in navigating the challenges and opportunities of AI adoption in specialised medical fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction. Revolutionizing Diabetic Retinopathy Screening: Integrating AI-Based Retinal Imaging in Primary Care. Developing an Annual Review of the Literature. Artificial Intelligence and ChatGPT in Medical Education: A Cross-Sectional Questionnaire on students' Competence. The Future of Generative AI in Continuing Professional Development (CPD): Crowdsourcing the Alliance Community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1