{"title":"学习通信网络中信息路由的状态增强策略","authors":"Sourajit Das;Navid NaderiAlizadeh;Alejandro Ribeiro","doi":"10.1109/TSP.2024.3516556","DOIUrl":null,"url":null,"abstract":"This paper examines the problem of information routing in a large-scale communication network, which can be formulated as a constrained statistical learning problem having access to only local information. We delineate a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures, by deploying graph convolutions over the topological links of the communication network. The proposed technique leverages only the local information available at each node and efficiently routes desired information to the destination nodes. We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies. In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms. Numerical simulations depict the improved performance of the proposed method in training a GNN parameterization as compared to baseline algorithms.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"204-218"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning State-Augmented Policies for Information Routing in Communication Networks\",\"authors\":\"Sourajit Das;Navid NaderiAlizadeh;Alejandro Ribeiro\",\"doi\":\"10.1109/TSP.2024.3516556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the problem of information routing in a large-scale communication network, which can be formulated as a constrained statistical learning problem having access to only local information. We delineate a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures, by deploying graph convolutions over the topological links of the communication network. The proposed technique leverages only the local information available at each node and efficiently routes desired information to the destination nodes. We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies. In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms. Numerical simulations depict the improved performance of the proposed method in training a GNN parameterization as compared to baseline algorithms.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"204-218\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10795656/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10795656/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Learning State-Augmented Policies for Information Routing in Communication Networks
This paper examines the problem of information routing in a large-scale communication network, which can be formulated as a constrained statistical learning problem having access to only local information. We delineate a novel State Augmentation (SA) strategy to maximize the aggregate information at source nodes using graph neural network (GNN) architectures, by deploying graph convolutions over the topological links of the communication network. The proposed technique leverages only the local information available at each node and efficiently routes desired information to the destination nodes. We leverage an unsupervised learning procedure to convert the output of the GNN architecture to optimal information routing strategies. In the experiments, we perform the evaluation on real-time network topologies to validate our algorithms. Numerical simulations depict the improved performance of the proposed method in training a GNN parameterization as compared to baseline algorithms.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.