全局有序模式注意熵:一种新的复杂信号特征提取方法

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-02-01 DOI:10.1016/j.chaos.2024.115810
Runze Jiang , Pengjian Shang , Yi Yin
{"title":"全局有序模式注意熵:一种新的复杂信号特征提取方法","authors":"Runze Jiang ,&nbsp;Pengjian Shang ,&nbsp;Yi Yin","doi":"10.1016/j.chaos.2024.115810","DOIUrl":null,"url":null,"abstract":"<div><div>Entropy serves as an effective method for quantifying the irregularity and complexity of nonlinear time series or complex signals. Recently, a novel entropy measure, attention entropy (AE), has been introduced for detecting interbeat interval time series. However, the original AE focuses solely on peak points, potentially overlooking crucial information embedded in signals. In this paper, we present the global ordinal pattern attention entropy (GOPAE), a novel measure that integrates AE with the principles of phase space reconstruction (PSR). Additionally, the connections between GOPAE and state-of-the-art time series network methods, including ordinal pattern transition network (OPTN) and recurrence quantification analysis (RQA), are elucidated to showcase its proficiency in extracting dynamic information from complex signals. Comparative experiments, both qualitative and quantitative, are conducted, using both simulated data and real-world signals. The results of the experiments suggest that GOPAE can effectively distinguishing complex signals in real application scenarios.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115810"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global ordinal pattern attention entropy: A novel feature extraction method for complex signals\",\"authors\":\"Runze Jiang ,&nbsp;Pengjian Shang ,&nbsp;Yi Yin\",\"doi\":\"10.1016/j.chaos.2024.115810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Entropy serves as an effective method for quantifying the irregularity and complexity of nonlinear time series or complex signals. Recently, a novel entropy measure, attention entropy (AE), has been introduced for detecting interbeat interval time series. However, the original AE focuses solely on peak points, potentially overlooking crucial information embedded in signals. In this paper, we present the global ordinal pattern attention entropy (GOPAE), a novel measure that integrates AE with the principles of phase space reconstruction (PSR). Additionally, the connections between GOPAE and state-of-the-art time series network methods, including ordinal pattern transition network (OPTN) and recurrence quantification analysis (RQA), are elucidated to showcase its proficiency in extracting dynamic information from complex signals. Comparative experiments, both qualitative and quantitative, are conducted, using both simulated data and real-world signals. The results of the experiments suggest that GOPAE can effectively distinguishing complex signals in real application scenarios.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115810\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013626\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013626","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

熵是一种量化非线性时间序列或复杂信号的不规则性和复杂性的有效方法。近年来,一种新的熵测度——注意熵(AE)被引入到间隔时间序列的检测中。然而,原始的声发射只关注峰值点,可能忽略了信号中嵌入的关键信息。本文提出了一种将全局有序模式注意熵(GOPAE)与相空间重构(PSR)原理相结合的测量方法。此外,阐述了GOPAE与最先进的时间序列网络方法(包括有序模式转换网络(OPTN)和递归量化分析(RQA))之间的联系,以展示其从复杂信号中提取动态信息的能力。对比实验,定性和定量,进行了使用模拟数据和现实世界的信号。实验结果表明,在实际应用场景中,GOPAE能够有效识别复杂信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global ordinal pattern attention entropy: A novel feature extraction method for complex signals
Entropy serves as an effective method for quantifying the irregularity and complexity of nonlinear time series or complex signals. Recently, a novel entropy measure, attention entropy (AE), has been introduced for detecting interbeat interval time series. However, the original AE focuses solely on peak points, potentially overlooking crucial information embedded in signals. In this paper, we present the global ordinal pattern attention entropy (GOPAE), a novel measure that integrates AE with the principles of phase space reconstruction (PSR). Additionally, the connections between GOPAE and state-of-the-art time series network methods, including ordinal pattern transition network (OPTN) and recurrence quantification analysis (RQA), are elucidated to showcase its proficiency in extracting dynamic information from complex signals. Comparative experiments, both qualitative and quantitative, are conducted, using both simulated data and real-world signals. The results of the experiments suggest that GOPAE can effectively distinguishing complex signals in real application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Editorial Board Elastic interaction of second-order rogue matter waves for the modified Gross–Pitaevskii equation with time-dependent trapping potential and gain/loss Dynamically controllable two-color electromagnetically induced grating via spatially modulated inelastic two-wave mixing Optimizing Physics-Informed Neural Networks with hybrid activation functions: A comparative study on improving residual loss and accuracy using partial differential equations Dynamical analysis, multi-cavity control and DSP implementation of a novel memristive autapse neuron model emulating brain behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1