Bo Li, Kun Lin, Xu Liu, Xudong Ma, Xuezhen Li, Zhiliang Wu, Cheng Li, Tao Yu, Tiansheng Wu, Zhongfang Yang
{"title":"西南高地球化学背景喀斯特地区土壤镉富集机理","authors":"Bo Li, Kun Lin, Xu Liu, Xudong Ma, Xuezhen Li, Zhiliang Wu, Cheng Li, Tao Yu, Tiansheng Wu, Zhongfang Yang","doi":"10.1016/j.chemgeo.2024.122523","DOIUrl":null,"url":null,"abstract":"Karst areas are formed from the dissolution of carbonate rocks and are present worldwide. The soil found in such areas is enriched in heavy metals, such as cadmium (Cd), lead (Pb) and Arsenic (As), and has geological high-background characteristics. However, this enrichment is anomalous depending on the type of bedrock, and the mechanism of enrichment has not yet been comprehensively elucidated. To explore the mechanisms of Cd enrichment in these soils, we investigated the distribution patterns and migration characteristics of Cd during the weathering and pedogenesis of carbonate rocks, and the causes of Cd enrichment and associated ecological risks were determined. The conclusions were as follows: (1) In the process of natural evolution, the boundary between the dissolution of carbonate rocks and the weathering of insoluble substances is unclear, resulting in the overlap of and interaction between the processes of dissolution-accumulation-weathering and pedogenesis. (2) In addition to the enrichment effects caused by the dissolution of carbonate rocks and the inheritance, the readsorption of insoluble substances and the retention of secondary carrier minerals are the main driving forces of Cd enrichment. (3) During the late stage of weathering of insoluble materials, soil acidification significantly promotes the Cd activation process. When the proportion of active Cd significantly increases, the ecological risk potential increases, especially in geological high-background areas rich in Cd.","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"5 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of cadmium (Cd) enrichment in the soil of karst areas with high geochemical background in Southwest China\",\"authors\":\"Bo Li, Kun Lin, Xu Liu, Xudong Ma, Xuezhen Li, Zhiliang Wu, Cheng Li, Tao Yu, Tiansheng Wu, Zhongfang Yang\",\"doi\":\"10.1016/j.chemgeo.2024.122523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Karst areas are formed from the dissolution of carbonate rocks and are present worldwide. The soil found in such areas is enriched in heavy metals, such as cadmium (Cd), lead (Pb) and Arsenic (As), and has geological high-background characteristics. However, this enrichment is anomalous depending on the type of bedrock, and the mechanism of enrichment has not yet been comprehensively elucidated. To explore the mechanisms of Cd enrichment in these soils, we investigated the distribution patterns and migration characteristics of Cd during the weathering and pedogenesis of carbonate rocks, and the causes of Cd enrichment and associated ecological risks were determined. The conclusions were as follows: (1) In the process of natural evolution, the boundary between the dissolution of carbonate rocks and the weathering of insoluble substances is unclear, resulting in the overlap of and interaction between the processes of dissolution-accumulation-weathering and pedogenesis. (2) In addition to the enrichment effects caused by the dissolution of carbonate rocks and the inheritance, the readsorption of insoluble substances and the retention of secondary carrier minerals are the main driving forces of Cd enrichment. (3) During the late stage of weathering of insoluble materials, soil acidification significantly promotes the Cd activation process. When the proportion of active Cd significantly increases, the ecological risk potential increases, especially in geological high-background areas rich in Cd.\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemgeo.2024.122523\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.chemgeo.2024.122523","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Mechanism of cadmium (Cd) enrichment in the soil of karst areas with high geochemical background in Southwest China
Karst areas are formed from the dissolution of carbonate rocks and are present worldwide. The soil found in such areas is enriched in heavy metals, such as cadmium (Cd), lead (Pb) and Arsenic (As), and has geological high-background characteristics. However, this enrichment is anomalous depending on the type of bedrock, and the mechanism of enrichment has not yet been comprehensively elucidated. To explore the mechanisms of Cd enrichment in these soils, we investigated the distribution patterns and migration characteristics of Cd during the weathering and pedogenesis of carbonate rocks, and the causes of Cd enrichment and associated ecological risks were determined. The conclusions were as follows: (1) In the process of natural evolution, the boundary between the dissolution of carbonate rocks and the weathering of insoluble substances is unclear, resulting in the overlap of and interaction between the processes of dissolution-accumulation-weathering and pedogenesis. (2) In addition to the enrichment effects caused by the dissolution of carbonate rocks and the inheritance, the readsorption of insoluble substances and the retention of secondary carrier minerals are the main driving forces of Cd enrichment. (3) During the late stage of weathering of insoluble materials, soil acidification significantly promotes the Cd activation process. When the proportion of active Cd significantly increases, the ecological risk potential increases, especially in geological high-background areas rich in Cd.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.