局部散热的导热辐射冷却膜

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-01-01 DOI:10.1016/j.mtphys.2024.101626
Qin Ye , Xingyu Chen , Hongjie Yan, Meijie Chen
{"title":"局部散热的导热辐射冷却膜","authors":"Qin Ye ,&nbsp;Xingyu Chen ,&nbsp;Hongjie Yan,&nbsp;Meijie Chen","doi":"10.1016/j.mtphys.2024.101626","DOIUrl":null,"url":null,"abstract":"<div><div>Radiative cooling has attracted lots of attention recently due to its electricity-free cooling by reflecting solar radiation and emitting thermal radiation to the cold outer space. However, how to improve heat dissipation performance at above-ambient temperatures is still a challenge for outdoor flexible devices. Here a bilayer structure was designed to achieve a thin and thermal conductive radiative cooling film for local heat dissipation in outdoor flexible devices, the local heating area can be avoided by the high in-plane thermal conductive performance and heat can be efficiently dissipated to the outer environment by daytime radiative cooling. The top layer consisted of porous hBN@PVDF-HFP film (thickness ∼ 100 μm) to realize daytime radiative cooling while the bottom layer was the directional graphene film (thickness ∼ 30 μm) to promote in-plane thermal conductive performance, high solar reflectance <span><math><mrow><msub><mover><mi>R</mi><mo>‾</mo></mover><mtext>solar</mtext></msub></mrow></math></span> = 0.944, thermal emittance <span><math><mrow><msub><mover><mi>ε</mi><mo>‾</mo></mover><mtext>LWIR</mtext></msub></mrow></math></span> = 0.904, and in-plane thermal diffusivity 185.7 mm<sup>2</sup> s<sup>−1</sup> were obtained. Under sunlight, the designed radiative cooling film can greatly reduce the local working temperature from 130.6 °C to 63.3 °C compared with the reference radiative cooling film at the same local heating power, which also shows great local heat dissipation performance under a non-flat surface. This work provides a potential approach to developing thermal conductive radiative cooling technologies for outdoor local heat dissipation applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101626"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal conductive radiative cooling film for local heat dissipation\",\"authors\":\"Qin Ye ,&nbsp;Xingyu Chen ,&nbsp;Hongjie Yan,&nbsp;Meijie Chen\",\"doi\":\"10.1016/j.mtphys.2024.101626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Radiative cooling has attracted lots of attention recently due to its electricity-free cooling by reflecting solar radiation and emitting thermal radiation to the cold outer space. However, how to improve heat dissipation performance at above-ambient temperatures is still a challenge for outdoor flexible devices. Here a bilayer structure was designed to achieve a thin and thermal conductive radiative cooling film for local heat dissipation in outdoor flexible devices, the local heating area can be avoided by the high in-plane thermal conductive performance and heat can be efficiently dissipated to the outer environment by daytime radiative cooling. The top layer consisted of porous hBN@PVDF-HFP film (thickness ∼ 100 μm) to realize daytime radiative cooling while the bottom layer was the directional graphene film (thickness ∼ 30 μm) to promote in-plane thermal conductive performance, high solar reflectance <span><math><mrow><msub><mover><mi>R</mi><mo>‾</mo></mover><mtext>solar</mtext></msub></mrow></math></span> = 0.944, thermal emittance <span><math><mrow><msub><mover><mi>ε</mi><mo>‾</mo></mover><mtext>LWIR</mtext></msub></mrow></math></span> = 0.904, and in-plane thermal diffusivity 185.7 mm<sup>2</sup> s<sup>−1</sup> were obtained. Under sunlight, the designed radiative cooling film can greatly reduce the local working temperature from 130.6 °C to 63.3 °C compared with the reference radiative cooling film at the same local heating power, which also shows great local heat dissipation performance under a non-flat surface. This work provides a potential approach to developing thermal conductive radiative cooling technologies for outdoor local heat dissipation applications.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"50 \",\"pages\":\"Article 101626\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254252932400302X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254252932400302X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

辐射冷却是一种通过反射太阳辐射并向寒冷的外层空间发射热辐射的无电冷却技术,近年来受到广泛关注。然而,如何提高室外柔性器件在高于环境温度下的散热性能仍然是一个挑战。本文设计了一种双层结构,实现了室外柔性器件局部散热的薄导热辐射冷却膜,通过高面内导热性能避免了局部受热区,并通过日间辐射冷却将热量有效地散发到外部环境。顶层为多孔hBN@PVDF-HFP薄膜(厚度~ 100 μm),可实现日间辐射冷却;底层为定向石墨烯薄膜(厚度~ 30 μm),可提高面内导热性能,获得了较高的太阳反射率= 0.944,热发射率= 0.904,面内热扩散率185.7 mm2 s-1。在阳光照射下,与参考辐射冷却膜相比,在相同的局部加热功率下,设计的辐射冷却膜可将局部工作温度从130.6 oC大幅降低至63.3 oC,在非平坦表面下也表现出良好的局部散热性能。这项工作为开发用于室外局部散热应用的导热辐射冷却技术提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal conductive radiative cooling film for local heat dissipation
Radiative cooling has attracted lots of attention recently due to its electricity-free cooling by reflecting solar radiation and emitting thermal radiation to the cold outer space. However, how to improve heat dissipation performance at above-ambient temperatures is still a challenge for outdoor flexible devices. Here a bilayer structure was designed to achieve a thin and thermal conductive radiative cooling film for local heat dissipation in outdoor flexible devices, the local heating area can be avoided by the high in-plane thermal conductive performance and heat can be efficiently dissipated to the outer environment by daytime radiative cooling. The top layer consisted of porous hBN@PVDF-HFP film (thickness ∼ 100 μm) to realize daytime radiative cooling while the bottom layer was the directional graphene film (thickness ∼ 30 μm) to promote in-plane thermal conductive performance, high solar reflectance Rsolar = 0.944, thermal emittance εLWIR = 0.904, and in-plane thermal diffusivity 185.7 mm2 s−1 were obtained. Under sunlight, the designed radiative cooling film can greatly reduce the local working temperature from 130.6 °C to 63.3 °C compared with the reference radiative cooling film at the same local heating power, which also shows great local heat dissipation performance under a non-flat surface. This work provides a potential approach to developing thermal conductive radiative cooling technologies for outdoor local heat dissipation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1