在加热至2300 K的样品上,同时测量250 GPa的真辐射冲击温度和声速对b1相MgO的熔化

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Solid Earth Pub Date : 2024-12-13 DOI:10.1029/2024JB029137
O. V. Fat’yanov, P. D. Asimow
{"title":"在加热至2300 K的样品上,同时测量250 GPa的真辐射冲击温度和声速对b1相MgO的熔化","authors":"O. V. Fat’yanov,&nbsp;P. D. Asimow","doi":"10.1029/2024JB029137","DOIUrl":null,"url":null,"abstract":"<p>To refine the melting curve, equation of state, and physical properties of MgO we performed plate impact experiments spanning <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>170–250 GPa on <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mn>100</mn>\n <mo>&gt;</mo>\n </mrow>\n <annotation> ${&lt; } 100 &gt; $</annotation>\n </semantics></math> MgO single crystals, preheated to 2300 K. A controlled thermal gradient in <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>20 mm long samples enabled radiative temperature (<span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math>3%–4%) and rarefaction overtake observations (yielding sound speed <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math>2%) close to the hot Mo driver with a free surface below <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>2000 K that minimized evaporation. Ta flyers were launched by two-stage light-gas gun up to 7.6 km/s and sample radiance was recorded with a 6-channel (500–850 nm) pyrometer. Shock front reflectivity was measured at 198 and 243 GPa using <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>50/50 sapphire beam-splitters. Most experiments show monotonic increases of shock temperature with pressure, from (168 GPa, 7100 K) to (243 GPa, 9400 K), in good agreement with predictions of our MgO B1 phase equation of state. Measured sound speeds are parallel to but <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>10% higher than model predictions for bulk sound speed of solid B1 MgO, confirming ductile behavior of preheated MgO. Two experiments, at 238 and 246 GPa, showed anomalously low shock temperature and sound speed, suggesting melting. Using reported MgO melting data up to 120 GPa and our data at 232–246 GPa, we constructed a maximum-likelihood Simon-Glatzel fit. At Earth's core-mantle boundary pressure (135 GPa), our best-fit interpolated MgO melting point is <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n <mo>=</mo>\n <mo>(</mo>\n <mn>7</mn>\n <mo>.</mo>\n <mn>77</mn>\n <mo>±</mo>\n <mn>0</mn>\n <mo>.</mo>\n <mn>03</mn>\n <mo>)</mo>\n <mo>·</mo>\n <msup>\n <mn>10</mn>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation> ${T}_{m}=(7.77\\pm 0.03)\\cdot {10}^{3}$</annotation>\n </semantics></math> K. Our proposed melting line falls within the envelope of theoretical predictions but does not completely agree with any particular model curve. Our results reduce the uncertainty on MgO melting temperature at Earth's core-mantle boundary by a factor of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>17 and provide an anchor for extension to multicomponent systems.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melting of B1-Phase MgO From Simultaneous True Radiative Shock Temperature and Sound Speed Measurements to 250 GPa on Samples Preheated to 2300 K\",\"authors\":\"O. V. Fat’yanov,&nbsp;P. D. Asimow\",\"doi\":\"10.1029/2024JB029137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To refine the melting curve, equation of state, and physical properties of MgO we performed plate impact experiments spanning <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>170–250 GPa on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <mn>100</mn>\\n <mo>&gt;</mo>\\n </mrow>\\n <annotation> ${&lt; } 100 &gt; $</annotation>\\n </semantics></math> MgO single crystals, preheated to 2300 K. A controlled thermal gradient in <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>20 mm long samples enabled radiative temperature (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation> $\\\\pm $</annotation>\\n </semantics></math>3%–4%) and rarefaction overtake observations (yielding sound speed <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation> $\\\\pm $</annotation>\\n </semantics></math>2%) close to the hot Mo driver with a free surface below <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>2000 K that minimized evaporation. Ta flyers were launched by two-stage light-gas gun up to 7.6 km/s and sample radiance was recorded with a 6-channel (500–850 nm) pyrometer. Shock front reflectivity was measured at 198 and 243 GPa using <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>50/50 sapphire beam-splitters. Most experiments show monotonic increases of shock temperature with pressure, from (168 GPa, 7100 K) to (243 GPa, 9400 K), in good agreement with predictions of our MgO B1 phase equation of state. Measured sound speeds are parallel to but <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>10% higher than model predictions for bulk sound speed of solid B1 MgO, confirming ductile behavior of preheated MgO. Two experiments, at 238 and 246 GPa, showed anomalously low shock temperature and sound speed, suggesting melting. Using reported MgO melting data up to 120 GPa and our data at 232–246 GPa, we constructed a maximum-likelihood Simon-Glatzel fit. At Earth's core-mantle boundary pressure (135 GPa), our best-fit interpolated MgO melting point is <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msub>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>7</mn>\\n <mo>.</mo>\\n <mn>77</mn>\\n <mo>±</mo>\\n <mn>0</mn>\\n <mo>.</mo>\\n <mn>03</mn>\\n <mo>)</mo>\\n <mo>·</mo>\\n <msup>\\n <mn>10</mn>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation> ${T}_{m}=(7.77\\\\pm 0.03)\\\\cdot {10}^{3}$</annotation>\\n </semantics></math> K. Our proposed melting line falls within the envelope of theoretical predictions but does not completely agree with any particular model curve. Our results reduce the uncertainty on MgO melting temperature at Earth's core-mantle boundary by a factor of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>17 and provide an anchor for extension to multicomponent systems.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029137\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029137","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了完善MgO的熔化曲线、状态方程和物理性质,我们在<;100>${< ${<;} 100 >;$ MgO单晶,预热至2300 K。在~ ${\sim} $ 20mm长的样品中控制热梯度,使辐射温度(±$\pm $ 3%-4%)和稀薄超越观测(产生声速±$\pm $2%)接近热Mo驱动器,自由表面低于~ ${\sim} $ 2000k,使蒸发最小化。利用两级光气枪以7.6 km/s的速度发射Ta传单,用6通道(500-850 nm)高温计记录样品辐射度。冲击波前反射率在198和243 GPa时测量,使用50/50蓝宝石分束器。大多数实验表明,冲击温度随压力单调增加,从(168 GPa, 7100 K)到(243 GPa, 9400 K),这与我们的MgO B1相状态方程的预测很好地吻合。测量到的声速与固体B1 MgO的体声速的模型预测平行,但比模型预测高10%,证实了预热MgO的延性行为。在238和246 GPa的两个实验中,显示了异常低的激波温度和声速,表明熔化。使用已报道的MgO熔点数据高达120 GPa和我们的数据在232-246 GPa,我们构建了一个最大似然Simon-Glatzel拟合。在地核-地幔边界压力(135 GPa)下,我们最适合的内插MgO熔点是Tm=(7.77±0.03)·103${T}_{m}=(7.77\pm 0.03)\cdot {10}^{3}$ k。我们提出的熔点线在理论预测的范围内,但不完全符合任何特定的模型曲线。我们的结果将地核-地幔边界MgO熔融温度的不确定性降低了约17,并为扩展到多组分系统提供了一个锚点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melting of B1-Phase MgO From Simultaneous True Radiative Shock Temperature and Sound Speed Measurements to 250 GPa on Samples Preheated to 2300 K

To refine the melting curve, equation of state, and physical properties of MgO we performed plate impact experiments spanning ${\sim} $ 170–250 GPa on < 100 > ${< } 100 > $ MgO single crystals, preheated to 2300 K. A controlled thermal gradient in ${\sim} $ 20 mm long samples enabled radiative temperature ( ± $\pm $ 3%–4%) and rarefaction overtake observations (yielding sound speed ± $\pm $ 2%) close to the hot Mo driver with a free surface below ${\sim} $ 2000 K that minimized evaporation. Ta flyers were launched by two-stage light-gas gun up to 7.6 km/s and sample radiance was recorded with a 6-channel (500–850 nm) pyrometer. Shock front reflectivity was measured at 198 and 243 GPa using ${\sim} $ 50/50 sapphire beam-splitters. Most experiments show monotonic increases of shock temperature with pressure, from (168 GPa, 7100 K) to (243 GPa, 9400 K), in good agreement with predictions of our MgO B1 phase equation of state. Measured sound speeds are parallel to but ${\sim} $ 10% higher than model predictions for bulk sound speed of solid B1 MgO, confirming ductile behavior of preheated MgO. Two experiments, at 238 and 246 GPa, showed anomalously low shock temperature and sound speed, suggesting melting. Using reported MgO melting data up to 120 GPa and our data at 232–246 GPa, we constructed a maximum-likelihood Simon-Glatzel fit. At Earth's core-mantle boundary pressure (135 GPa), our best-fit interpolated MgO melting point is T m = ( 7 . 77 ± 0 . 03 ) · 10 3 ${T}_{m}=(7.77\pm 0.03)\cdot {10}^{3}$ K. Our proposed melting line falls within the envelope of theoretical predictions but does not completely agree with any particular model curve. Our results reduce the uncertainty on MgO melting temperature at Earth's core-mantle boundary by a factor of ${\sim} $ 17 and provide an anchor for extension to multicomponent systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
期刊最新文献
Dynamics of the 2021 Fagradalsfjall Eruption (Iceland) Revealed by Volcanic Tremor Patterns The Role of the Three-Dimensional Geometry of Fault Steps on Event Migration During Fluid-Induced Seismic Sequences Microseismicity in the Large-N Swath-D Network: Revealing Seismic Sequences and Active Faults in the Eastern Alps Iterative Helmholtz Surface Wave Tomography Using Generalized Wave Equation Smoothing Splines—Application to Western Europe Near-Field Imaging of Near-Identical Mw5.9 Earthquakes in the Crust of Ibaraki, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1