杂原子掺入量对氧化钌析氧机制的影响

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-12-13 DOI:10.1016/j.chempr.2024.11.005
Hyunwoo Jun, Eunseo Kang, Jinuk Moon, Hoyoung Kim, Sunghoon Han, Seokhyun Choung, Seongbeen Kim, Seung Yeop Yi, Eunae Kang, Chang Hyuck Choi, Jeong Woo Han, Jinwoo Lee
{"title":"杂原子掺入量对氧化钌析氧机制的影响","authors":"Hyunwoo Jun, Eunseo Kang, Jinuk Moon, Hoyoung Kim, Sunghoon Han, Seokhyun Choung, Seongbeen Kim, Seung Yeop Yi, Eunae Kang, Chang Hyuck Choi, Jeong Woo Han, Jinwoo Lee","doi":"10.1016/j.chempr.2024.11.005","DOIUrl":null,"url":null,"abstract":"Research on ruthenium oxide (RuO<sub>2</sub>) catalysts as alternatives to Ir-based catalysts for the acidic oxygen evolution reaction (OER) has focused on enhancing activity and stability by incorporating heteroatoms. However, the relationship between the amount of incorporated heteroatom and the OER mechanism remains unclear. Herein, we synthesized rutile manganese-ruthenium solid-solution oxides (Mn<sub>x</sub>Ru<sub>1-x</sub>O<sub>2</sub>) with varying Mn/Ru ratios to identify factors affecting activity and stability with Mn content. Both experimental and computational results show that increasing Mn content raises the oxidation state of Ru and shifts the OER mechanism from the adsorbate evolution mechanism (AEM) to the lattice oxygen mechanism (LOM). Increased Mn concentration enhances Ru–O bond covalency, leading to lattice oxygen involvement in the OER. The Mn<sub>0.2</sub>Ru<sub>0.8</sub>O<sub>2</sub> catalyst, with an optimal Mn/Ru ratio, operated stably in a proton exchange membrane water electrolyzer (PEMWE) for 100 h and achieved 3.15 A cm<sup>−2</sup> at 1.8 V<sub>cell</sub>, surpassing the 2026 Department of Energy activity goal.","PeriodicalId":268,"journal":{"name":"Chem","volume":"29 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantity effect of heteroatom incorporation on the oxygen evolution mechanism in ruthenium oxide\",\"authors\":\"Hyunwoo Jun, Eunseo Kang, Jinuk Moon, Hoyoung Kim, Sunghoon Han, Seokhyun Choung, Seongbeen Kim, Seung Yeop Yi, Eunae Kang, Chang Hyuck Choi, Jeong Woo Han, Jinwoo Lee\",\"doi\":\"10.1016/j.chempr.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on ruthenium oxide (RuO<sub>2</sub>) catalysts as alternatives to Ir-based catalysts for the acidic oxygen evolution reaction (OER) has focused on enhancing activity and stability by incorporating heteroatoms. However, the relationship between the amount of incorporated heteroatom and the OER mechanism remains unclear. Herein, we synthesized rutile manganese-ruthenium solid-solution oxides (Mn<sub>x</sub>Ru<sub>1-x</sub>O<sub>2</sub>) with varying Mn/Ru ratios to identify factors affecting activity and stability with Mn content. Both experimental and computational results show that increasing Mn content raises the oxidation state of Ru and shifts the OER mechanism from the adsorbate evolution mechanism (AEM) to the lattice oxygen mechanism (LOM). Increased Mn concentration enhances Ru–O bond covalency, leading to lattice oxygen involvement in the OER. The Mn<sub>0.2</sub>Ru<sub>0.8</sub>O<sub>2</sub> catalyst, with an optimal Mn/Ru ratio, operated stably in a proton exchange membrane water electrolyzer (PEMWE) for 100 h and achieved 3.15 A cm<sup>−2</sup> at 1.8 V<sub>cell</sub>, surpassing the 2026 Department of Energy activity goal.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.11.005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化钌(RuO2)催化剂作为ir基催化剂在酸性出氧反应(OER)中的替代品的研究主要集中在通过加入杂原子来提高活性和稳定性。然而,杂原子掺入量与OER机制之间的关系尚不清楚。在此,我们合成了不同Mn/Ru比的金红石锰钌固溶体氧化物(MnxRu1-xO2),以确定Mn含量对活性和稳定性的影响因素。实验和计算结果均表明,Mn含量的增加提高了Ru的氧化态,使OER机制从吸附质演化机制(AEM)转变为晶格氧机制(LOM)。Mn浓度的增加提高了Ru-O键的共价,导致OER中晶格氧的参与。Mn0.2Ru0.8O2催化剂具有最佳的Mn/Ru比,在质子交换膜水电解槽(PEMWE)中稳定运行100 h,并在1.8 v电池下达到3.15 a cm - 2,超过了美国能源部2026年的活动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantity effect of heteroatom incorporation on the oxygen evolution mechanism in ruthenium oxide
Research on ruthenium oxide (RuO2) catalysts as alternatives to Ir-based catalysts for the acidic oxygen evolution reaction (OER) has focused on enhancing activity and stability by incorporating heteroatoms. However, the relationship between the amount of incorporated heteroatom and the OER mechanism remains unclear. Herein, we synthesized rutile manganese-ruthenium solid-solution oxides (MnxRu1-xO2) with varying Mn/Ru ratios to identify factors affecting activity and stability with Mn content. Both experimental and computational results show that increasing Mn content raises the oxidation state of Ru and shifts the OER mechanism from the adsorbate evolution mechanism (AEM) to the lattice oxygen mechanism (LOM). Increased Mn concentration enhances Ru–O bond covalency, leading to lattice oxygen involvement in the OER. The Mn0.2Ru0.8O2 catalyst, with an optimal Mn/Ru ratio, operated stably in a proton exchange membrane water electrolyzer (PEMWE) for 100 h and achieved 3.15 A cm−2 at 1.8 Vcell, surpassing the 2026 Department of Energy activity goal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Engineered material-binding peptide empowers biocatalysis in stainless steel flow reactors for phosphate recovery Osmium atomic sites on CuS nanoplates for efficient two-electron oxygen reduction into H2O2 Synthesis and magnetic property of a telluryl radical Enantioselective synthesis of amino acids by photocatalytic reduction of CO2 on chiral mesostructured ZnS The sustainability potential of single-atom catalysts in chemical process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1