{"title":"城市杂草芭蕉(车前草属)不会过度积累重金属,也不会使其土壤中的微型节肢动物群落免受这些金属的危害","authors":"Eric G. Yee , Katalin Szlavecz , Meghan L. Avolio","doi":"10.1016/j.ufug.2024.128632","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metal hyperaccumulation by plants is a powerful tool in phytoremediation, where plants store heavy metals in large amounts in their aboveground tissue. Plant species in the <em>Plantago</em> genus exhibit this phenomenon, and their commonness in metropolitan centers around the world make them strong candidates for use in cities. Additionally, alteration of soil conditions by these plants can have cascading consequences on their soil microarthropod communities, which are strong bioindicators of soil health. To this end, we investigated the hyperaccumulation ability of two plantain species, <em>Plantago lanceolata</em> (non-native to North America) and <em>Plantago rugelii</em> (native to North America), and their soil microarthropod communities from field-collected specimens in Baltimore, MD, USA, which has an extensively documented legacy of heavy metal contamination. Notably, this is the first study to assess the influence of plant hyperaccumulation on soil microarthropod abundance and diversity using soil health bioindication metrics. First, we found that all sites sampled in Baltimore, MD exceed US governmental soil limits for As and Fe. Second, neither <em>Plantago</em> spp. hyperaccumulates any heavy metal in standard heavy metal screenings, though both species show signs of sequestration of some metals in their roots (i.e., phytoexclusion). Additionally, while native <em>P. rugelii</em> did not hyperaccumulate metals in this study, the relatively high translocation factor (TF or root: shoot) suggests it may have the capacity for it. We also found that soil microarthropod abundance was significantly greater in <em>P. lanceolata</em> rhizospheres (p < 0.05), but bioindication of soil health (acari: collembola) was dependent on a combination of plant species identity and contamination level. Lastly, we found that soil microarthropod diversity was significantly affected by Al and As concentration.</div></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":"104 ","pages":"Article 128632"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban weedy plantains (Plantago spp.) do not hyperaccumulate heavy metals nor shelter their soil microarthropod communities from these metals\",\"authors\":\"Eric G. Yee , Katalin Szlavecz , Meghan L. Avolio\",\"doi\":\"10.1016/j.ufug.2024.128632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heavy metal hyperaccumulation by plants is a powerful tool in phytoremediation, where plants store heavy metals in large amounts in their aboveground tissue. Plant species in the <em>Plantago</em> genus exhibit this phenomenon, and their commonness in metropolitan centers around the world make them strong candidates for use in cities. Additionally, alteration of soil conditions by these plants can have cascading consequences on their soil microarthropod communities, which are strong bioindicators of soil health. To this end, we investigated the hyperaccumulation ability of two plantain species, <em>Plantago lanceolata</em> (non-native to North America) and <em>Plantago rugelii</em> (native to North America), and their soil microarthropod communities from field-collected specimens in Baltimore, MD, USA, which has an extensively documented legacy of heavy metal contamination. Notably, this is the first study to assess the influence of plant hyperaccumulation on soil microarthropod abundance and diversity using soil health bioindication metrics. First, we found that all sites sampled in Baltimore, MD exceed US governmental soil limits for As and Fe. Second, neither <em>Plantago</em> spp. hyperaccumulates any heavy metal in standard heavy metal screenings, though both species show signs of sequestration of some metals in their roots (i.e., phytoexclusion). Additionally, while native <em>P. rugelii</em> did not hyperaccumulate metals in this study, the relatively high translocation factor (TF or root: shoot) suggests it may have the capacity for it. We also found that soil microarthropod abundance was significantly greater in <em>P. lanceolata</em> rhizospheres (p < 0.05), but bioindication of soil health (acari: collembola) was dependent on a combination of plant species identity and contamination level. Lastly, we found that soil microarthropod diversity was significantly affected by Al and As concentration.</div></div>\",\"PeriodicalId\":49394,\"journal\":{\"name\":\"Urban Forestry & Urban Greening\",\"volume\":\"104 \",\"pages\":\"Article 128632\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Forestry & Urban Greening\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1618866724004308\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724004308","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Urban weedy plantains (Plantago spp.) do not hyperaccumulate heavy metals nor shelter their soil microarthropod communities from these metals
Heavy metal hyperaccumulation by plants is a powerful tool in phytoremediation, where plants store heavy metals in large amounts in their aboveground tissue. Plant species in the Plantago genus exhibit this phenomenon, and their commonness in metropolitan centers around the world make them strong candidates for use in cities. Additionally, alteration of soil conditions by these plants can have cascading consequences on their soil microarthropod communities, which are strong bioindicators of soil health. To this end, we investigated the hyperaccumulation ability of two plantain species, Plantago lanceolata (non-native to North America) and Plantago rugelii (native to North America), and their soil microarthropod communities from field-collected specimens in Baltimore, MD, USA, which has an extensively documented legacy of heavy metal contamination. Notably, this is the first study to assess the influence of plant hyperaccumulation on soil microarthropod abundance and diversity using soil health bioindication metrics. First, we found that all sites sampled in Baltimore, MD exceed US governmental soil limits for As and Fe. Second, neither Plantago spp. hyperaccumulates any heavy metal in standard heavy metal screenings, though both species show signs of sequestration of some metals in their roots (i.e., phytoexclusion). Additionally, while native P. rugelii did not hyperaccumulate metals in this study, the relatively high translocation factor (TF or root: shoot) suggests it may have the capacity for it. We also found that soil microarthropod abundance was significantly greater in P. lanceolata rhizospheres (p < 0.05), but bioindication of soil health (acari: collembola) was dependent on a combination of plant species identity and contamination level. Lastly, we found that soil microarthropod diversity was significantly affected by Al and As concentration.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.