stt3介导的CD24异常n -糖基化抑制三阴性乳腺癌紫杉醇敏感性。

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Acta Pharmacologica Sinica Pub Date : 2024-12-12 DOI:10.1038/s41401-024-01419-0
Jun Wang, Hui-Min Zhang, Guan-Hua Zhu, Li-Li Zhao, Ji Shi, Zhou-Tong Dai, Jia-Peng Li, Xing-Rui Li, Fan Sun, Yuan Wu, Shao-Yong Chen, Han-Ning Li, Xing-Hua Liao, Yuan Xiang
{"title":"stt3介导的CD24异常n -糖基化抑制三阴性乳腺癌紫杉醇敏感性。","authors":"Jun Wang, Hui-Min Zhang, Guan-Hua Zhu, Li-Li Zhao, Ji Shi, Zhou-Tong Dai, Jia-Peng Li, Xing-Rui Li, Fan Sun, Yuan Wu, Shao-Yong Chen, Han-Ning Li, Xing-Hua Liao, Yuan Xiang","doi":"10.1038/s41401-024-01419-0","DOIUrl":null,"url":null,"abstract":"<p><p>Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STT3-mediated aberrant N-glycosylation of CD24 inhibits paclitaxel sensitivity in triple-negative breast cancer.\",\"authors\":\"Jun Wang, Hui-Min Zhang, Guan-Hua Zhu, Li-Li Zhao, Ji Shi, Zhou-Tong Dai, Jia-Peng Li, Xing-Rui Li, Fan Sun, Yuan Wu, Shao-Yong Chen, Han-Ning Li, Xing-Hua Liao, Yuan Xiang\",\"doi\":\"10.1038/s41401-024-01419-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-024-01419-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01419-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

紫杉醇是临床上治疗三阴性乳腺癌的主要化疗药物之一。然而,TNBC患者紫杉醇耐药一直困扰着TNBC患者,导致预后较差。异常蛋白糖基化与肿瘤的发生发展及化疗耐药等恶性表型密切相关。CD24是一种高度糖基化的膜蛋白,在TNBC中高度表达,导致肿瘤发生和预后不良。本研究探讨了TNBC中CD24异常糖基化与紫杉醇易感性的关系及其分子机制。我们发现CD24蛋白水平在TNBC组织和细胞中显著上调,CD24蛋白高度糖基化。遗传和药理抑制CD24的n -糖基化可增强紫杉醇在体外和异种肿瘤移植模型中的抗癌活性。我们揭示了CD24的n -糖基化在紫杉醇耐药中的分子机制涉及抑制铁凋亡,这是一种调节细胞死亡的新形式。抑制CD24的n -糖基化增加谷胱甘肽消耗、铁含量和脂质过氧化,导致紫杉醇诱导的铁下垂。我们证明了内质网(ER)相关的糖基转移酶STT3亚型(包括STT3A和STT3B亚型)能够使l -天冬酰胺(N)位点的N-糖基化。敲除TNBC细胞中内源性STT3亚型部分降低了CD24的糖基化状态。我们的研究结果证明了CD24的n -糖基化在通过抑制铁下垂来减弱药物敏感性方面的关键作用,突出了靶向CD24的n -糖基化具有提高化疗敏感性和疗效的巨大潜力的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STT3-mediated aberrant N-glycosylation of CD24 inhibits paclitaxel sensitivity in triple-negative breast cancer.

Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
期刊最新文献
Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism. CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Circular RNA hsa_circ_0000288 protects against epilepsy in mice by binding to and stabilizing caprin1 protein. Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation. Co-inhibition of RAGE and TLR4 sensitizes pancreatic cancer to irreversible electroporation in mice by disrupting autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1