AEBP1沉默通过PRKCA-PI3K-Akt轴调控神经元铁下沉和小胶质细胞M2极化,保护脑缺血/再灌注损伤。

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL Drug Development Research Pub Date : 2024-12-13 DOI:10.1002/ddr.70032
Yafen Zhang, Yan Li, Fengli Liu
{"title":"AEBP1沉默通过PRKCA-PI3K-Akt轴调控神经元铁下沉和小胶质细胞M2极化,保护脑缺血/再灌注损伤。","authors":"Yafen Zhang,&nbsp;Yan Li,&nbsp;Fengli Liu","doi":"10.1002/ddr.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cerebral ischemia/reperfusion injury is one of the main causes of neuronal damage. Neuron ferroptosis and microglia polarization are considered as critical processes during cerebral ischemia/reperfusion. Adipocyte enhancer-binding protein 1 (AEBP1) usually acts as a transcriptional repressor which is involved in various diseases. However, it is still remains unknown whether AEBP1 could have important roles in regulating the neuron ferroptosis and microglia polarization in cerebral ischemia/reperfusion injury. The oxygen-glucose deprivation and reperfusion (OGD/R)-treated cells and middle cerebral artery occlusion (MCAO)-treated mice were used as in vitro and in vivo models. The differentially expressed factors were analyzed according to GEO datasets. Relative mRNA and protein expression levels were detected by qRT-PCR and western blot analysis. Cell viability was measured by CCK-8 assay. ROS, GSH and iron contents were detected using specifical assay kits. CD26 and CD206 levels were measured by immunofluorescence assay. Inflammatory cytokines were detected by ELISA. The association between AEBP1 and PRKCA was assessed by luciferase reporter and ChIP analyses. The neuron damage in mice was analyzed by TTC staining and neurological deficit score. Transcription factor AEBP1 was increased in OGD/R-treated HT22 and BV2 cells. AEBP1 silencing attenuated OGD/R-induced HT22 cell ferroptosis through increasing cell viability, GSH and GPX4 levels, and decreasing ROS, iron and ACSL4 levels. AEBP1 knockdown promoted microglia M2 polarization by increasing CD206-positive cells and Arg-1 level, and reducing iNOS, TNF-α, IL-1β and IL-6 levels in BV2 cells. AEBP1 transcriptionally repressed PRKCA expression, and further regulated PI3K/Akt signaling activation. Inhibition of PRKCA or PI3K/Akt reversed the effects of AEBP1 silencing on neuron ferroptosis and microglia M2 polarization. AEBP1 downregulation attenuated neuronal damage by decreasing infarct size and deficit scores in MCAO-treated mice. AEBP1 silencing mitigated neuron ferroptosis and promoted microglia M2 polarization through increasing PRKCA and activating PI3K/Akt signaling, indicating the potentially protective action of AEBP1 knockdown in cerebral ischemia/reperfusion injury.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 8","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AEBP1 Silencing Protects Against Cerebral Ischemia/Reperfusion Injury by Regulating Neuron Ferroptosis and Microglia M2 Polarization Through PRKCA-PI3K-Akt Axis\",\"authors\":\"Yafen Zhang,&nbsp;Yan Li,&nbsp;Fengli Liu\",\"doi\":\"10.1002/ddr.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cerebral ischemia/reperfusion injury is one of the main causes of neuronal damage. Neuron ferroptosis and microglia polarization are considered as critical processes during cerebral ischemia/reperfusion. Adipocyte enhancer-binding protein 1 (AEBP1) usually acts as a transcriptional repressor which is involved in various diseases. However, it is still remains unknown whether AEBP1 could have important roles in regulating the neuron ferroptosis and microglia polarization in cerebral ischemia/reperfusion injury. The oxygen-glucose deprivation and reperfusion (OGD/R)-treated cells and middle cerebral artery occlusion (MCAO)-treated mice were used as in vitro and in vivo models. The differentially expressed factors were analyzed according to GEO datasets. Relative mRNA and protein expression levels were detected by qRT-PCR and western blot analysis. Cell viability was measured by CCK-8 assay. ROS, GSH and iron contents were detected using specifical assay kits. CD26 and CD206 levels were measured by immunofluorescence assay. Inflammatory cytokines were detected by ELISA. The association between AEBP1 and PRKCA was assessed by luciferase reporter and ChIP analyses. The neuron damage in mice was analyzed by TTC staining and neurological deficit score. Transcription factor AEBP1 was increased in OGD/R-treated HT22 and BV2 cells. AEBP1 silencing attenuated OGD/R-induced HT22 cell ferroptosis through increasing cell viability, GSH and GPX4 levels, and decreasing ROS, iron and ACSL4 levels. AEBP1 knockdown promoted microglia M2 polarization by increasing CD206-positive cells and Arg-1 level, and reducing iNOS, TNF-α, IL-1β and IL-6 levels in BV2 cells. AEBP1 transcriptionally repressed PRKCA expression, and further regulated PI3K/Akt signaling activation. Inhibition of PRKCA or PI3K/Akt reversed the effects of AEBP1 silencing on neuron ferroptosis and microglia M2 polarization. AEBP1 downregulation attenuated neuronal damage by decreasing infarct size and deficit scores in MCAO-treated mice. AEBP1 silencing mitigated neuron ferroptosis and promoted microglia M2 polarization through increasing PRKCA and activating PI3K/Akt signaling, indicating the potentially protective action of AEBP1 knockdown in cerebral ischemia/reperfusion injury.</p>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 8\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70032\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

脑缺血/再灌注损伤是神经元损伤的主要原因之一。神经元铁质化和小胶质细胞极化被认为是脑缺血/再灌注过程中的关键过程。脂肪细胞增强子结合蛋白 1(AEBP1)通常作为转录抑制因子参与多种疾病的发生。然而,AEBP1在调节脑缺血再灌注损伤中神经元铁突变和小胶质细胞极化方面是否具有重要作用,目前仍是未知数。本研究采用氧-葡萄糖剥夺再灌注(OGD/R)处理细胞和大脑中动脉闭塞(MCAO)处理小鼠作为体外和体内模型。根据 GEO 数据集分析了差异表达因子。通过 qRT-PCR 和 Western 印迹分析检测相对 mRNA 和蛋白质表达水平。细胞活力通过 CCK-8 检测法进行测量。ROS、GSH和铁含量通过专用检测试剂盒进行检测。通过免疫荧光法测定 CD26 和 CD206 水平。用酶联免疫吸附法检测炎性细胞因子。通过荧光素酶报告和 ChIP 分析评估 AEBP1 和 PRKCA 之间的关联。通过 TTC 染色和神经功能缺损评分分析小鼠神经元损伤情况。转录因子AEBP1在OGD/R处理的HT22和BV2细胞中增加。沉默AEBP1可提高细胞活力、GSH和GPX4水平,降低ROS、铁和ACSL4水平,从而减轻OGD/R诱导的HT22细胞铁变态反应。敲除 AEBP1 可增加 CD206 阳性细胞和 Arg-1 水平,降低 BV2 细胞中 iNOS、TNF-α、IL-1β 和 IL-6 水平,从而促进小胶质细胞 M2 极化。AEBP1 可转录抑制 PRKCA 的表达,并进一步调控 PI3K/Akt 信号的激活。抑制 PRKCA 或 PI3K/Akt 可逆转 AEBP1 沉默对神经元铁突变和小胶质细胞 M2 极化的影响。下调 AEBP1 可减少 MCAO 治疗小鼠的梗死面积和缺损评分,从而减轻神经元损伤。通过增加PRKCA和激活PI3K/Akt信号,AEBP1沉默可减轻神经元铁蛋白沉着并促进小胶质细胞M2极化,这表明AEBP1敲除对脑缺血再灌注损伤具有潜在的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AEBP1 Silencing Protects Against Cerebral Ischemia/Reperfusion Injury by Regulating Neuron Ferroptosis and Microglia M2 Polarization Through PRKCA-PI3K-Akt Axis

Cerebral ischemia/reperfusion injury is one of the main causes of neuronal damage. Neuron ferroptosis and microglia polarization are considered as critical processes during cerebral ischemia/reperfusion. Adipocyte enhancer-binding protein 1 (AEBP1) usually acts as a transcriptional repressor which is involved in various diseases. However, it is still remains unknown whether AEBP1 could have important roles in regulating the neuron ferroptosis and microglia polarization in cerebral ischemia/reperfusion injury. The oxygen-glucose deprivation and reperfusion (OGD/R)-treated cells and middle cerebral artery occlusion (MCAO)-treated mice were used as in vitro and in vivo models. The differentially expressed factors were analyzed according to GEO datasets. Relative mRNA and protein expression levels were detected by qRT-PCR and western blot analysis. Cell viability was measured by CCK-8 assay. ROS, GSH and iron contents were detected using specifical assay kits. CD26 and CD206 levels were measured by immunofluorescence assay. Inflammatory cytokines were detected by ELISA. The association between AEBP1 and PRKCA was assessed by luciferase reporter and ChIP analyses. The neuron damage in mice was analyzed by TTC staining and neurological deficit score. Transcription factor AEBP1 was increased in OGD/R-treated HT22 and BV2 cells. AEBP1 silencing attenuated OGD/R-induced HT22 cell ferroptosis through increasing cell viability, GSH and GPX4 levels, and decreasing ROS, iron and ACSL4 levels. AEBP1 knockdown promoted microglia M2 polarization by increasing CD206-positive cells and Arg-1 level, and reducing iNOS, TNF-α, IL-1β and IL-6 levels in BV2 cells. AEBP1 transcriptionally repressed PRKCA expression, and further regulated PI3K/Akt signaling activation. Inhibition of PRKCA or PI3K/Akt reversed the effects of AEBP1 silencing on neuron ferroptosis and microglia M2 polarization. AEBP1 downregulation attenuated neuronal damage by decreasing infarct size and deficit scores in MCAO-treated mice. AEBP1 silencing mitigated neuron ferroptosis and promoted microglia M2 polarization through increasing PRKCA and activating PI3K/Akt signaling, indicating the potentially protective action of AEBP1 knockdown in cerebral ischemia/reperfusion injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
期刊最新文献
Novel Benzosuberone/Indanone-Linked Thiazoles as Small-Molecule SARS-CoV-2 Main Protease Inhibitors. A Novel Topical Compound Gel Loading Minoxidil and Tofacitinib for Treatment of Alopecia Areata: Formulation, Characterization, and In Vitro/In Vivo Evaluation Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors Strategies for the Discovery and Design of Tissue Plasminogen Activators: Insights Into Bioengineering Objectives A Novel Oxo-Palmatine Derivative 2q as Potent Reversal Agents Against Alzheimer's Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1