一种化学重编程方法有效地产生用于视网膜疾病治疗的人视网膜色素上皮细胞。

IF 5.9 1区 生物学 Q2 CELL BIOLOGY Cell Proliferation Pub Date : 2024-12-12 DOI:10.1111/cpr.13785
Ke Zhang, Yanqiu Wang, Qi An, Hengjing Ji, Defu Wu, Xuri Li, Lingge Suo, Chun Zhang, Xuran Dong
{"title":"一种化学重编程方法有效地产生用于视网膜疾病治疗的人视网膜色素上皮细胞。","authors":"Ke Zhang, Yanqiu Wang, Qi An, Hengjing Ji, Defu Wu, Xuri Li, Lingge Suo, Chun Zhang, Xuran Dong","doi":"10.1111/cpr.13785","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13785"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies.\",\"authors\":\"Ke Zhang, Yanqiu Wang, Qi An, Hengjing Ji, Defu Wu, Xuri Li, Lingge Suo, Chun Zhang, Xuran Dong\",\"doi\":\"10.1111/cpr.13785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e13785\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.13785\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13785","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类诱导多能干细胞(hiPSCs)是一种很有前景的细胞来源,可用于产生适合临床治疗应用的功能细胞,特别是在自体细胞疗法中。然而,通过基因操作(尤其是涉及致癌基因的操作)生产 hiPSCs 可能会引发安全问题。此外,与 hiPSCs 生成相关的复杂性和高成本也阻碍了它们在临床上的广泛应用。在这项研究中,我们利用最近开发的化学重编程方法与引导分化方案相结合,引入了一种化学定义的策略,从脂肪组织中生成功能性人视网膜色素上皮细胞(RPE),绕过了传统的 hiPSCs 生成难题。通过利用基于小分子的化学鸡尾酒,我们以更安全、更简化的方式将体细胞重编程为人类化学诱导多能干细胞(hCiPSCs),完全避免了基因操作。随后,hCiPSCs 分化为功能性 RPE 细胞,显示了它们的分泌和吞噬能力,强调了它们在维持视网膜稳态中的重要作用,并突出了它们的治疗潜力。我们的研究结果凸显了 hCiPSCs 作为更安全、更高效的个性化细胞疗法选择的变革潜力,其应用范围已从眼部疾病扩展到广泛的医疗条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies.

Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
期刊最新文献
Regenerating Locus Coeruleus-Norepinephrine (LC-NE) Function: A Novel Approach for Neurodegenerative Diseases. DNA Damage Repair in Glioblastoma: A Novel Approach to Combat Drug Resistance. The S-Phase Arrest of Host Cells Caused by an Alpha-Herpesvirus Genome Replication Facilitates Viral Recruitment of RNA Polymerase II to Transcribe Viral Genes. Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells. The Interaction Between Vasculogenic Mimicry and the Immune System: Mechanistic Insights and Dual Exploration in Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1