{"title":"葡聚糖硫酸盐修饰和ph响应纳米探针用于易损斑块的磁共振/荧光双模成像。","authors":"Jianing Cheng, Liguo Hao, Xiaorong Zhu, Ruifan Ma, Silong Li, Qiangqiang Yin, Dongxu Wang, Haifeng Hu, Tianyu Zhang, Zheng Li, Houyi Cong, Xiaoyang Zheng, Jun He, Yuguang Wang","doi":"10.1002/jbm.a.37847","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with Gd<sub>2</sub>O<sub>3</sub> (MSN@Gd<sub>2</sub>O<sub>3</sub>), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles). The nanoprobe presented a more concentrated distribution of spherical shapes in transmission electron microscopy. In vitro simulated vulnerable plaque microenvironment (pH = 5.5) presented significant T<sub>1</sub>-weighted imaging (T<sub>1</sub>WI) signal and longitudinal relaxation in the nanoprobe. Immunofluorescence staining and cellular uptake assays showed that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have the ability to specially bind to scavenger receptors A (SR-A). In vascular endothelium from the high-fat diet (HFD) New Zealand White rabbits, MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles can exhibit specific contrast-enhanced signals by MR/NIRF dual-modal imaging. In addition, cytotoxicity assays and hematoxylin and eosin (H&E) staining results demonstrated that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have good biocompatibility. Hence, this multifunctional MR/NIRF bimodal nanoprobe provides new experimental and technological ideas for the accurate diagnosis of vulnerable plaques.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques\",\"authors\":\"Jianing Cheng, Liguo Hao, Xiaorong Zhu, Ruifan Ma, Silong Li, Qiangqiang Yin, Dongxu Wang, Haifeng Hu, Tianyu Zhang, Zheng Li, Houyi Cong, Xiaoyang Zheng, Jun He, Yuguang Wang\",\"doi\":\"10.1002/jbm.a.37847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with Gd<sub>2</sub>O<sub>3</sub> (MSN@Gd<sub>2</sub>O<sub>3</sub>), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles). The nanoprobe presented a more concentrated distribution of spherical shapes in transmission electron microscopy. In vitro simulated vulnerable plaque microenvironment (pH = 5.5) presented significant T<sub>1</sub>-weighted imaging (T<sub>1</sub>WI) signal and longitudinal relaxation in the nanoprobe. Immunofluorescence staining and cellular uptake assays showed that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have the ability to specially bind to scavenger receptors A (SR-A). In vascular endothelium from the high-fat diet (HFD) New Zealand White rabbits, MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles can exhibit specific contrast-enhanced signals by MR/NIRF dual-modal imaging. In addition, cytotoxicity assays and hematoxylin and eosin (H&E) staining results demonstrated that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have good biocompatibility. Hence, this multifunctional MR/NIRF bimodal nanoprobe provides new experimental and technological ideas for the accurate diagnosis of vulnerable plaques.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37847\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37847","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques
Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with Gd2O3 (MSN@Gd2O3), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@Gd2O3@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@Gd2O3@IR808@DS nanoparticles). The nanoprobe presented a more concentrated distribution of spherical shapes in transmission electron microscopy. In vitro simulated vulnerable plaque microenvironment (pH = 5.5) presented significant T1-weighted imaging (T1WI) signal and longitudinal relaxation in the nanoprobe. Immunofluorescence staining and cellular uptake assays showed that MSN@Gd2O3@IR808@DS nanoparticles have the ability to specially bind to scavenger receptors A (SR-A). In vascular endothelium from the high-fat diet (HFD) New Zealand White rabbits, MSN@Gd2O3@IR808@DS nanoparticles can exhibit specific contrast-enhanced signals by MR/NIRF dual-modal imaging. In addition, cytotoxicity assays and hematoxylin and eosin (H&E) staining results demonstrated that MSN@Gd2O3@IR808@DS nanoparticles have good biocompatibility. Hence, this multifunctional MR/NIRF bimodal nanoprobe provides new experimental and technological ideas for the accurate diagnosis of vulnerable plaques.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.