边缘计算中的分布式机器学习:挑战、解决方案和未来方向

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-12-13 DOI:10.1145/3708495
Jingke Tu, Lei Yang, Jiannong Cao
{"title":"边缘计算中的分布式机器学习:挑战、解决方案和未来方向","authors":"Jingke Tu, Lei Yang, Jiannong Cao","doi":"10.1145/3708495","DOIUrl":null,"url":null,"abstract":"Distributed machine learning on edges is widely used in intelligent transportation, smart home, industrial manufacturing, and underground pipe network monitoring to achieve low latency and real time data processing and prediction. However, the presence of a large number of sensing and edge devices with limited computing, storage, and communication capabilities prevents the deployment of huge machine learning models and hinders its application. At the same time, although distributed machine learning on edges forms an emerging and rapidly growing research area, there has not been a systematic survey on this topic. The article begins by detailing the challenges of distributed machine learning in edge environments, such as limited node resources, data heterogeneity, privacy, security issues, and summarizes common metrics for model optimization. We then present a detailed analysis of parallelism patterns, distributed architectures, and model communication and aggregation schemes in edge computing. we subsequently present a comprehensive classification and intensive description of node resource-constrained processing, heterogeneous data processing, attacks and protection of privacy. The article ends by summarizing the applications of distributed machine learning in edge computing and presenting problems and challenges for further research.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"3 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Machine Learning in Edge Computing: Challenges, Solutions and Future Directions\",\"authors\":\"Jingke Tu, Lei Yang, Jiannong Cao\",\"doi\":\"10.1145/3708495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed machine learning on edges is widely used in intelligent transportation, smart home, industrial manufacturing, and underground pipe network monitoring to achieve low latency and real time data processing and prediction. However, the presence of a large number of sensing and edge devices with limited computing, storage, and communication capabilities prevents the deployment of huge machine learning models and hinders its application. At the same time, although distributed machine learning on edges forms an emerging and rapidly growing research area, there has not been a systematic survey on this topic. The article begins by detailing the challenges of distributed machine learning in edge environments, such as limited node resources, data heterogeneity, privacy, security issues, and summarizes common metrics for model optimization. We then present a detailed analysis of parallelism patterns, distributed architectures, and model communication and aggregation schemes in edge computing. we subsequently present a comprehensive classification and intensive description of node resource-constrained processing, heterogeneous data processing, attacks and protection of privacy. The article ends by summarizing the applications of distributed machine learning in edge computing and presenting problems and challenges for further research.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3708495\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3708495","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

边缘上的分布式机器学习广泛应用于智能交通、智能家居、工业制造、地下管网监控等领域,实现低延迟、实时的数据处理和预测。然而,大量计算、存储和通信能力有限的传感和边缘设备的存在阻碍了大型机器学习模型的部署,并阻碍了其应用。与此同时,尽管边缘上的分布式机器学习是一个新兴且快速发展的研究领域,但目前还没有对这一主题进行系统的调查。本文首先详细介绍了边缘环境中分布式机器学习的挑战,例如有限的节点资源、数据异构、隐私和安全问题,并总结了用于模型优化的常用指标。然后,我们详细分析了并行模式、分布式架构以及边缘计算中的模型通信和聚合方案。随后,我们对节点资源约束处理、异构数据处理、攻击和隐私保护进行了全面的分类和深入的描述。文章最后总结了分布式机器学习在边缘计算中的应用,并提出了进一步研究的问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Machine Learning in Edge Computing: Challenges, Solutions and Future Directions
Distributed machine learning on edges is widely used in intelligent transportation, smart home, industrial manufacturing, and underground pipe network monitoring to achieve low latency and real time data processing and prediction. However, the presence of a large number of sensing and edge devices with limited computing, storage, and communication capabilities prevents the deployment of huge machine learning models and hinders its application. At the same time, although distributed machine learning on edges forms an emerging and rapidly growing research area, there has not been a systematic survey on this topic. The article begins by detailing the challenges of distributed machine learning in edge environments, such as limited node resources, data heterogeneity, privacy, security issues, and summarizes common metrics for model optimization. We then present a detailed analysis of parallelism patterns, distributed architectures, and model communication and aggregation schemes in edge computing. we subsequently present a comprehensive classification and intensive description of node resource-constrained processing, heterogeneous data processing, attacks and protection of privacy. The article ends by summarizing the applications of distributed machine learning in edge computing and presenting problems and challenges for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
Compact Data Structures for Network Telemetry Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques Embodied Intelligence: A Synergy of Morphology, Action, Perception and Learning Hallucination Detection in Foundation Models for Decision-Making: A Flexible Definition and Review of the State of the Art Deep Learning Based Image Aesthetic Quality Assessment- A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1