转换高分辨率成像:超表面和超透镜研究进展综述

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-01-01 DOI:10.1016/j.mtphys.2024.101628
Nikolay Lvovich Kazanskiy , Svetlana Nikolaevna Khonina , Muhammad Ali Butt
{"title":"转换高分辨率成像:超表面和超透镜研究进展综述","authors":"Nikolay Lvovich Kazanskiy ,&nbsp;Svetlana Nikolaevna Khonina ,&nbsp;Muhammad Ali Butt","doi":"10.1016/j.mtphys.2024.101628","DOIUrl":null,"url":null,"abstract":"<div><div>Meta-optics, particularly through the use of metasurfaces (MSs), have revolutionized high-resolution imaging (HRI) by enabling unprecedented control over light at the subwavelength scale. Metalenses (MLs), a key component of meta-optics, can correct chromatic aberrations and focus light with extreme precision, surpassing the limitations of traditional optics. Their compact design and ability to manipulate various wavelengths and polarizations of light allow for ultra-thin, lightweight imaging systems with enhanced resolution. These advancements are pushing the boundaries of imaging technologies in applications such as microscopy, sensing, and even consumer electronics. This review highlights recent advancements in MSs, with a focus on MLs for HRI. Additionally, the integration of deep learning techniques is explored, demonstrating enhanced imaging performance. Prospects and potential developments in ML technology are discussed, providing insights into their role in advancing next-generation imaging systems.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101628"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming high-resolution imaging: A comprehensive review of advances in metasurfaces and metalenses\",\"authors\":\"Nikolay Lvovich Kazanskiy ,&nbsp;Svetlana Nikolaevna Khonina ,&nbsp;Muhammad Ali Butt\",\"doi\":\"10.1016/j.mtphys.2024.101628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meta-optics, particularly through the use of metasurfaces (MSs), have revolutionized high-resolution imaging (HRI) by enabling unprecedented control over light at the subwavelength scale. Metalenses (MLs), a key component of meta-optics, can correct chromatic aberrations and focus light with extreme precision, surpassing the limitations of traditional optics. Their compact design and ability to manipulate various wavelengths and polarizations of light allow for ultra-thin, lightweight imaging systems with enhanced resolution. These advancements are pushing the boundaries of imaging technologies in applications such as microscopy, sensing, and even consumer electronics. This review highlights recent advancements in MSs, with a focus on MLs for HRI. Additionally, the integration of deep learning techniques is explored, demonstrating enhanced imaging performance. Prospects and potential developments in ML technology are discussed, providing insights into their role in advancing next-generation imaging systems.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"50 \",\"pages\":\"Article 101628\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324003043\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003043","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

元光学,特别是通过使用元表面(MSs),通过在亚波长尺度上实现前所未有的光控制,彻底改变了高分辨率成像(HRI)。超透镜(MLs)是元光学的重要组成部分,它能以极高的精度校正色差和聚焦光,超越了传统光学的局限性。其紧凑的设计和操纵各种波长和偏振光的能力,使超薄、轻量的成像系统具有更高的分辨率。这些进步正在推动成像技术在显微镜、传感甚至消费电子等应用领域的发展。这篇综述强调了MLs的最新进展,重点是HRI的MLs。此外,还探索了深度学习技术的集成,展示了增强的成像性能。讨论了机器学习技术的前景和潜在发展,提供了他们在推进下一代成像系统中的作用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming high-resolution imaging: A comprehensive review of advances in metasurfaces and metalenses
Meta-optics, particularly through the use of metasurfaces (MSs), have revolutionized high-resolution imaging (HRI) by enabling unprecedented control over light at the subwavelength scale. Metalenses (MLs), a key component of meta-optics, can correct chromatic aberrations and focus light with extreme precision, surpassing the limitations of traditional optics. Their compact design and ability to manipulate various wavelengths and polarizations of light allow for ultra-thin, lightweight imaging systems with enhanced resolution. These advancements are pushing the boundaries of imaging technologies in applications such as microscopy, sensing, and even consumer electronics. This review highlights recent advancements in MSs, with a focus on MLs for HRI. Additionally, the integration of deep learning techniques is explored, demonstrating enhanced imaging performance. Prospects and potential developments in ML technology are discussed, providing insights into their role in advancing next-generation imaging systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1