Alexander S. Yates, Corentin Caudron, Aurélien Mordret, Philippe Lesage, Virginie Pinel, Thomas Lecocq, Craig A. Miller, Oliver D. Lamb, Nicolas Fournier
{"title":"新西兰鲁阿佩胡火山季节性雪循环及其对地震速度变化和喷发活动的可能影响","authors":"Alexander S. Yates, Corentin Caudron, Aurélien Mordret, Philippe Lesage, Virginie Pinel, Thomas Lecocq, Craig A. Miller, Oliver D. Lamb, Nicolas Fournier","doi":"10.1029/2024JB029568","DOIUrl":null,"url":null,"abstract":"<p>Understanding volcanic eruption triggers is critical toward anticipating future activity. While internal magma dynamics typically receive more attention, the influence of external processes remains less understood. In this context, we explore the relationship between seasonal snow cycles and eruptive activity at Ruapehu, New Zealand. This is motivated by apparent seasonality in the eruptive record, where a higher than expected proportion of eruptions (post-1960) occur in spring (including the two previous eruptions of 2006 and 2007). Employing recent advancements in passive seismic interferometry, we compute sub-surface seismic velocity changes between 2005 and 2009 using the cross-wavelet transform approach. Stations on the volcano record a higher velocity in winter, closely correlated with the presence of snow. Inverting for depth suggests these changes occur within the upper 300 m. Notably, we observe that the timing of the previous two eruptions coincides with a period associated with an earlier velocity decrease at approximately 200–300 m depth relative to the surface. Reduced water infiltration (as precipitation falls as snow) is considered a likely control of seasonal velocities, while modeling also points to a contribution from snow-loading. We hypothesize that this latter process may play a role toward explaining seasonality in the eruptive record. Our findings shed light on the complex interactions between volcanoes and external environmental processes, highlighting the need for more focused research in this area. Pursuing this line of inquiry has significant implications toward improved risk and hazard assessments at not just Ruapehu, but also other volcanoes globally that experience seasonal snow cover.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029568","citationCount":"0","resultStr":"{\"title\":\"Seasonal Snow Cycles and Their Possible Influence on Seismic Velocity Changes and Eruptive Activity at Ruapehu Volcano, New Zealand\",\"authors\":\"Alexander S. Yates, Corentin Caudron, Aurélien Mordret, Philippe Lesage, Virginie Pinel, Thomas Lecocq, Craig A. Miller, Oliver D. Lamb, Nicolas Fournier\",\"doi\":\"10.1029/2024JB029568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding volcanic eruption triggers is critical toward anticipating future activity. While internal magma dynamics typically receive more attention, the influence of external processes remains less understood. In this context, we explore the relationship between seasonal snow cycles and eruptive activity at Ruapehu, New Zealand. This is motivated by apparent seasonality in the eruptive record, where a higher than expected proportion of eruptions (post-1960) occur in spring (including the two previous eruptions of 2006 and 2007). Employing recent advancements in passive seismic interferometry, we compute sub-surface seismic velocity changes between 2005 and 2009 using the cross-wavelet transform approach. Stations on the volcano record a higher velocity in winter, closely correlated with the presence of snow. Inverting for depth suggests these changes occur within the upper 300 m. Notably, we observe that the timing of the previous two eruptions coincides with a period associated with an earlier velocity decrease at approximately 200–300 m depth relative to the surface. Reduced water infiltration (as precipitation falls as snow) is considered a likely control of seasonal velocities, while modeling also points to a contribution from snow-loading. We hypothesize that this latter process may play a role toward explaining seasonality in the eruptive record. Our findings shed light on the complex interactions between volcanoes and external environmental processes, highlighting the need for more focused research in this area. Pursuing this line of inquiry has significant implications toward improved risk and hazard assessments at not just Ruapehu, but also other volcanoes globally that experience seasonal snow cover.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029568\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029568","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Seasonal Snow Cycles and Their Possible Influence on Seismic Velocity Changes and Eruptive Activity at Ruapehu Volcano, New Zealand
Understanding volcanic eruption triggers is critical toward anticipating future activity. While internal magma dynamics typically receive more attention, the influence of external processes remains less understood. In this context, we explore the relationship between seasonal snow cycles and eruptive activity at Ruapehu, New Zealand. This is motivated by apparent seasonality in the eruptive record, where a higher than expected proportion of eruptions (post-1960) occur in spring (including the two previous eruptions of 2006 and 2007). Employing recent advancements in passive seismic interferometry, we compute sub-surface seismic velocity changes between 2005 and 2009 using the cross-wavelet transform approach. Stations on the volcano record a higher velocity in winter, closely correlated with the presence of snow. Inverting for depth suggests these changes occur within the upper 300 m. Notably, we observe that the timing of the previous two eruptions coincides with a period associated with an earlier velocity decrease at approximately 200–300 m depth relative to the surface. Reduced water infiltration (as precipitation falls as snow) is considered a likely control of seasonal velocities, while modeling also points to a contribution from snow-loading. We hypothesize that this latter process may play a role toward explaining seasonality in the eruptive record. Our findings shed light on the complex interactions between volcanoes and external environmental processes, highlighting the need for more focused research in this area. Pursuing this line of inquiry has significant implications toward improved risk and hazard assessments at not just Ruapehu, but also other volcanoes globally that experience seasonal snow cover.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.