{"title":"Effective removal of nitrate and phosphate ions from water using nickel-doped calcium alginate beads","authors":"Parham Joolaei Ahranjani, Kamine Dehghan, Sepideh Farhoudi, Mehdi Esmaeili Bidhendi, Zahra Sotoudehnia Korrani, Shahabaldin Rezania","doi":"10.1016/j.psep.2024.12.034","DOIUrl":null,"url":null,"abstract":"Water contamination by nitrate and phosphate ions remains a critical environmental and public health challenge, largely driven by agricultural runoff and industrial activities. In this study, the adsorption capacity of nickel-doped calcium alginate beads (Ni-CaAlg) as a novel adsorbent for the dual removal of nitrate and phosphate ions from water has been investigated. Incorporating nickel ions into the alginate matrix enhanced adsorption capacity and provided additional active sites, fostering electrostatic interactions with the target contaminants. The characterization including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy-Dispersive X-ray Spectroscopy (EDX), Brunauer–Emmett–Teller (BET) analysis, and zeta potential measurement (pHpzc), confirmed the successful doping, structural integrity, and surface charge properties of the beads. Based on the findings, in the optimized conditions of pH 6, adsorbent dosage of 30 mg, and contact time of 120 min, the Ni-CaAlg beads had the highest adsorption capacities of 169.5 mg/g for nitrate and 238.1 mg/g for phosphate. The adsorption process followed a pseudo-second-order kinetic model and well-fitted with the Langmuir isotherm, confirming chemisorption and monolayer adsorption. The beads retained over 70 % of their initial adsorption capacity after ten adsorption-desorption cycles, underscoring their durability and reusability. These findings establish Ni-CaAlg beads as a promising and innovative solution for mitigating nitrate and phosphate contamination in water treatment systems.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"29 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2024.12.034","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effective removal of nitrate and phosphate ions from water using nickel-doped calcium alginate beads
Water contamination by nitrate and phosphate ions remains a critical environmental and public health challenge, largely driven by agricultural runoff and industrial activities. In this study, the adsorption capacity of nickel-doped calcium alginate beads (Ni-CaAlg) as a novel adsorbent for the dual removal of nitrate and phosphate ions from water has been investigated. Incorporating nickel ions into the alginate matrix enhanced adsorption capacity and provided additional active sites, fostering electrostatic interactions with the target contaminants. The characterization including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy-Dispersive X-ray Spectroscopy (EDX), Brunauer–Emmett–Teller (BET) analysis, and zeta potential measurement (pHpzc), confirmed the successful doping, structural integrity, and surface charge properties of the beads. Based on the findings, in the optimized conditions of pH 6, adsorbent dosage of 30 mg, and contact time of 120 min, the Ni-CaAlg beads had the highest adsorption capacities of 169.5 mg/g for nitrate and 238.1 mg/g for phosphate. The adsorption process followed a pseudo-second-order kinetic model and well-fitted with the Langmuir isotherm, confirming chemisorption and monolayer adsorption. The beads retained over 70 % of their initial adsorption capacity after ten adsorption-desorption cycles, underscoring their durability and reusability. These findings establish Ni-CaAlg beads as a promising and innovative solution for mitigating nitrate and phosphate contamination in water treatment systems.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.