Lingxiao Cheng;Ying Li;Kangjia Zhao;Bingxin Liu;Yuanheng Sun
{"title":"基于改进型超像素模块和 DeepLab V3+ 的两阶段溢油探测方法(使用合成孔径雷达图像","authors":"Lingxiao Cheng;Ying Li;Kangjia Zhao;Bingxin Liu;Yuanheng Sun","doi":"10.1109/LGRS.2024.3508020","DOIUrl":null,"url":null,"abstract":"The application of deep learning in synthetic aperture radar (SAR) oil spill detection often faces challenges such as speckle noise and limited data volume. To address these issues, this article proposes a two-stage oil spill detection method, SD-OIL, which consists of a superpixel generation module (S3G), and a semantic segmentation model, DeepLab V3+ (the implementation process can be seen at \n<uri>https://github.com/GeminiCheng/ResearchCode</uri>\n). The first stage emphasizes superpixel generation, where S3G innovatively employs social support analysis and spectral angle mapping to develop a pixel-based social support quantification model that considers both individual and community perspectives, facilitating effective superpixel generation. In the semantic segmentation stage, the output from S3G enhances the segmentation performance of DeepLab V3+. Experimental results show that SD-OIL surpasses numerous existing segmentation-based oil spill detection methods, achieving an mIoU of 91.69%. The results also indicate that the S3G module significantly improves the accuracy of oil spill detection.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Oil Spill Detection Method Based on an Improved Superpixel Module and DeepLab V3+ Using SAR Images\",\"authors\":\"Lingxiao Cheng;Ying Li;Kangjia Zhao;Bingxin Liu;Yuanheng Sun\",\"doi\":\"10.1109/LGRS.2024.3508020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of deep learning in synthetic aperture radar (SAR) oil spill detection often faces challenges such as speckle noise and limited data volume. To address these issues, this article proposes a two-stage oil spill detection method, SD-OIL, which consists of a superpixel generation module (S3G), and a semantic segmentation model, DeepLab V3+ (the implementation process can be seen at \\n<uri>https://github.com/GeminiCheng/ResearchCode</uri>\\n). The first stage emphasizes superpixel generation, where S3G innovatively employs social support analysis and spectral angle mapping to develop a pixel-based social support quantification model that considers both individual and community perspectives, facilitating effective superpixel generation. In the semantic segmentation stage, the output from S3G enhances the segmentation performance of DeepLab V3+. Experimental results show that SD-OIL surpasses numerous existing segmentation-based oil spill detection methods, achieving an mIoU of 91.69%. The results also indicate that the S3G module significantly improves the accuracy of oil spill detection.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770231/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770231/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Two-Stage Oil Spill Detection Method Based on an Improved Superpixel Module and DeepLab V3+ Using SAR Images
The application of deep learning in synthetic aperture radar (SAR) oil spill detection often faces challenges such as speckle noise and limited data volume. To address these issues, this article proposes a two-stage oil spill detection method, SD-OIL, which consists of a superpixel generation module (S3G), and a semantic segmentation model, DeepLab V3+ (the implementation process can be seen at
https://github.com/GeminiCheng/ResearchCode
). The first stage emphasizes superpixel generation, where S3G innovatively employs social support analysis and spectral angle mapping to develop a pixel-based social support quantification model that considers both individual and community perspectives, facilitating effective superpixel generation. In the semantic segmentation stage, the output from S3G enhances the segmentation performance of DeepLab V3+. Experimental results show that SD-OIL surpasses numerous existing segmentation-based oil spill detection methods, achieving an mIoU of 91.69%. The results also indicate that the S3G module significantly improves the accuracy of oil spill detection.