Jere Rusanen;Negar Shabanzadeh;Aarno Pärssinen;Timo Rahkonen;Janne P. Aikio
{"title":"通过补偿正交杂化失配效应改善ka波段集成平衡功率放大器性能","authors":"Jere Rusanen;Negar Shabanzadeh;Aarno Pärssinen;Timo Rahkonen;Janne P. Aikio","doi":"10.1109/TVLSI.2024.3475810","DOIUrl":null,"url":null,"abstract":"This article presents an integrated quadrature balanced power amplifier (PA) operating at a 26-GHz frequency range and techniques to mitigate the frequency-dependent amplitude response of quadrature hybrids used in the balanced amplifier design. The overall structure consists of two stacked pseudo-differential PAs and transformer-based quadrature hybrids designed with 22-nm CMOS FDSOI. Two techniques to compensate frequency-dependent amplitude response of the quadrature hybrid when operating away from the center frequency are proposed. The first one involves a dual input drive and the second one involves asymmetric biasing. With distortion contribution analysis, it is shown that asymmetric biasing compensates quadrature hybrid asymmetry but also produces mutually compensating third-order nonlinearity, resulting in improved linearity. Measurements with continuous wave (CW) and high dynamic range fifth generation (5G) modulated signal demonstrate that the described techniques improve output power that can be reached within the linearity specifications when operating away from the center frequency.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 12","pages":"2198-2209"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726609","citationCount":"0","resultStr":"{\"title\":\"Improving a Ka-Band Integrated Balanced Power Amplifier Performance by Compensating Quadrature Hybrid Mismatch Effects\",\"authors\":\"Jere Rusanen;Negar Shabanzadeh;Aarno Pärssinen;Timo Rahkonen;Janne P. Aikio\",\"doi\":\"10.1109/TVLSI.2024.3475810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an integrated quadrature balanced power amplifier (PA) operating at a 26-GHz frequency range and techniques to mitigate the frequency-dependent amplitude response of quadrature hybrids used in the balanced amplifier design. The overall structure consists of two stacked pseudo-differential PAs and transformer-based quadrature hybrids designed with 22-nm CMOS FDSOI. Two techniques to compensate frequency-dependent amplitude response of the quadrature hybrid when operating away from the center frequency are proposed. The first one involves a dual input drive and the second one involves asymmetric biasing. With distortion contribution analysis, it is shown that asymmetric biasing compensates quadrature hybrid asymmetry but also produces mutually compensating third-order nonlinearity, resulting in improved linearity. Measurements with continuous wave (CW) and high dynamic range fifth generation (5G) modulated signal demonstrate that the described techniques improve output power that can be reached within the linearity specifications when operating away from the center frequency.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"32 12\",\"pages\":\"2198-2209\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726609\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10726609/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10726609/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Improving a Ka-Band Integrated Balanced Power Amplifier Performance by Compensating Quadrature Hybrid Mismatch Effects
This article presents an integrated quadrature balanced power amplifier (PA) operating at a 26-GHz frequency range and techniques to mitigate the frequency-dependent amplitude response of quadrature hybrids used in the balanced amplifier design. The overall structure consists of two stacked pseudo-differential PAs and transformer-based quadrature hybrids designed with 22-nm CMOS FDSOI. Two techniques to compensate frequency-dependent amplitude response of the quadrature hybrid when operating away from the center frequency are proposed. The first one involves a dual input drive and the second one involves asymmetric biasing. With distortion contribution analysis, it is shown that asymmetric biasing compensates quadrature hybrid asymmetry but also produces mutually compensating third-order nonlinearity, resulting in improved linearity. Measurements with continuous wave (CW) and high dynamic range fifth generation (5G) modulated signal demonstrate that the described techniques improve output power that can be reached within the linearity specifications when operating away from the center frequency.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.