具有正交约束条件的不可行优化的局部线性收敛性

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-09 DOI:10.1109/LCSYS.2024.3513817
Youbang Sun;Shixiang Chen;Alfredo Garcia;Shahin Shahrampour
{"title":"具有正交约束条件的不可行优化的局部线性收敛性","authors":"Youbang Sun;Shixiang Chen;Alfredo Garcia;Shahin Shahrampour","doi":"10.1109/LCSYS.2024.3513817","DOIUrl":null,"url":null,"abstract":"Many classical and modern machine learning algorithms require solving optimization tasks under orthogonality constraints. Solving these tasks with feasible methods requires a gradient descent update followed by a retraction operation on the Stiefel manifold, which can be computationally expensive. Recently, an infeasible retraction-free approach, termed the landing algorithm, was proposed as an efficient alternative. Motivated by the common occurrence of orthogonality constraints in tasks such as principle component analysis and training of deep neural networks, this letter studies the landing algorithm and establishes a novel linear convergence rate for smooth non-convex functions using only a local Riemannian PŁ condition. Numerical experiments demonstrate that the landing algorithm performs on par with the state-of-the-art retraction-based methods with substantially reduced computational overhead.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2727-2732"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Linear Convergence of Infeasible Optimization With Orthogonal Constraints\",\"authors\":\"Youbang Sun;Shixiang Chen;Alfredo Garcia;Shahin Shahrampour\",\"doi\":\"10.1109/LCSYS.2024.3513817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many classical and modern machine learning algorithms require solving optimization tasks under orthogonality constraints. Solving these tasks with feasible methods requires a gradient descent update followed by a retraction operation on the Stiefel manifold, which can be computationally expensive. Recently, an infeasible retraction-free approach, termed the landing algorithm, was proposed as an efficient alternative. Motivated by the common occurrence of orthogonality constraints in tasks such as principle component analysis and training of deep neural networks, this letter studies the landing algorithm and establishes a novel linear convergence rate for smooth non-convex functions using only a local Riemannian PŁ condition. Numerical experiments demonstrate that the landing algorithm performs on par with the state-of-the-art retraction-based methods with substantially reduced computational overhead.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2727-2732\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10786380/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

许多经典和现代机器学习算法需要在正交性约束下解决优化任务。用可行的方法解决这些问题需要进行梯度下降更新,然后对Stiefel流形进行缩回操作,这在计算上是非常昂贵的。最近,一种不可行的无收放方法被称为着陆算法,作为一种有效的替代方法被提出。由于在深度神经网络的主成分分析和训练等任务中常见的正交性约束,本文研究了着陆算法,并仅使用局部黎曼PŁ条件建立了光滑非凸函数的新的线性收敛速率。数值实验表明,该着陆算法的性能与基于最先进的收缩方法相当,并且大大减少了计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Linear Convergence of Infeasible Optimization With Orthogonal Constraints
Many classical and modern machine learning algorithms require solving optimization tasks under orthogonality constraints. Solving these tasks with feasible methods requires a gradient descent update followed by a retraction operation on the Stiefel manifold, which can be computationally expensive. Recently, an infeasible retraction-free approach, termed the landing algorithm, was proposed as an efficient alternative. Motivated by the common occurrence of orthogonality constraints in tasks such as principle component analysis and training of deep neural networks, this letter studies the landing algorithm and establishes a novel linear convergence rate for smooth non-convex functions using only a local Riemannian PŁ condition. Numerical experiments demonstrate that the landing algorithm performs on par with the state-of-the-art retraction-based methods with substantially reduced computational overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1