Devika Sajeev, Aparna Rajesh, R Nethish Kumaar, D Aswin, Rangasamy Jayakumar, Sreeja C Nair
{"title":"化学修饰壳聚糖作为药物输送系统的功能性生物材料。","authors":"Devika Sajeev, Aparna Rajesh, R Nethish Kumaar, D Aswin, Rangasamy Jayakumar, Sreeja C Nair","doi":"10.1016/j.carres.2024.109351","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity. Modified chitosan is the most effective functional biomaterial that can be used to deliver the drugs to the targeted site. With diverse and versatile characteristics, it can be fabricated into various drug delivery systems such as membranes, beads, fibers, microparticles, composites, and scaffolds, for different drug delivery methods. Integrating nanotechnology with modified chitosan enhanced the delivery attributes of antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, protein/peptides, and nucleic acids for intended use toward desired therapeutic outcomes. The review brings out an overview of the research regarding drug delivery systems utilizing modifying chitosan detailing the properties, functionality, and applications.</p>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"548 ","pages":"109351"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically modified chitosan as a functional biomaterial for drug delivery system.\",\"authors\":\"Devika Sajeev, Aparna Rajesh, R Nethish Kumaar, D Aswin, Rangasamy Jayakumar, Sreeja C Nair\",\"doi\":\"10.1016/j.carres.2024.109351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity. Modified chitosan is the most effective functional biomaterial that can be used to deliver the drugs to the targeted site. With diverse and versatile characteristics, it can be fabricated into various drug delivery systems such as membranes, beads, fibers, microparticles, composites, and scaffolds, for different drug delivery methods. Integrating nanotechnology with modified chitosan enhanced the delivery attributes of antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, protein/peptides, and nucleic acids for intended use toward desired therapeutic outcomes. The review brings out an overview of the research regarding drug delivery systems utilizing modifying chitosan detailing the properties, functionality, and applications.</p>\",\"PeriodicalId\":9415,\"journal\":{\"name\":\"Carbohydrate Research\",\"volume\":\"548 \",\"pages\":\"109351\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.carres.2024.109351\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carres.2024.109351","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chemically modified chitosan as a functional biomaterial for drug delivery system.
Chitosan is a natural polymer that can degrade in the environment and support green chemistry. It displays superior biocompatibility, easy access, and easy modification due to the reactive amino groups to transform or improve the physical and chemical properties. Chitosan can be chemically modified to enhance its properties, such as water solubility and biological activity. Modified chitosan is the most effective functional biomaterial that can be used to deliver the drugs to the targeted site. With diverse and versatile characteristics, it can be fabricated into various drug delivery systems such as membranes, beads, fibers, microparticles, composites, and scaffolds, for different drug delivery methods. Integrating nanotechnology with modified chitosan enhanced the delivery attributes of antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, protein/peptides, and nucleic acids for intended use toward desired therapeutic outcomes. The review brings out an overview of the research regarding drug delivery systems utilizing modifying chitosan detailing the properties, functionality, and applications.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".