Guodong Liu, Hui Li, Le Feng, Min Li, Peng Gao, Fang Wang
{"title":"在高糖条件下,o - glcn酰化通过connexin43途径促进星形胶质细胞-间质转化。","authors":"Guodong Liu, Hui Li, Le Feng, Min Li, Peng Gao, Fang Wang","doi":"10.1016/j.exer.2024.110206","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effects of O-linked N-acetylglucosamine modification (O-GlcNAcylation) on astroglial-mesenchymal transition through connexin43 (Cx43) pathway under high-glucose conditions. The primary rat astrocytes were cultured under normal and high-glucose conditions, and level of GFAP, α-SMA and Cx43 was investigated. To explore the influence of O-GlcNAcylation on astroglial-mesenchymal transition, Thiamet G treatment was employed to enhance O-GlcNAcylation, while Alloxan was used to decrease it. Cx43 knockdown was acquired through lentivirus constructs to explore its role in astrocyte transition. The levels of GFAP and α-SMA expressions were examined, while astrocyte proliferation was evaluated using the CCK-8 assay, and migration was assessed through wound healing assays. The results showed that primary rat astrocytes were identified by GFAP antibody staining. Under high-glucose conditions, the levels of GFAP, α-SMA, and Cx43 increased, as confirmed by Western blot and immunofluorescence. O-GlcNAcylation augmentation induced by Thiamet G treatment significantly increased the expression of GFAP, α-SMA, and Cx43 compared to both normal and high-glucose conditions. Conversely, the inhibition of O-GlcNAcylation reversed the high-glucose-induced increase in GFAP and α-SMA. Cx43 knockout led to the downregulation of GFAP and α-SMA compared to high-glucose and O-GlcNAcylation-augmented conditions. Additionally, levels of O-GlcNAcylation and VEGF were reduced in Cx43 knockout group. Consistently, CCK8 and wound healing assays demonstrated that Cx43 knockout could inhibit astrocyte proliferation and migration compared to the high-glucose and O-GlcNAcylation augmented groups. These findings demonstrate that astroglial-mesenchymal transition occurs under high-glucose conditions, and can be promoted by O-GlcNAcylation augmentation, but suppressed by Cx43 knockout. The study underscores the significant role of Cx43 in this transition and its potential involvement in diabetic complications.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110206"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O-GlcNAcylation promotes astroglial-mesenchymal transition via the connexin43 pathway under high-glucose conditions.\",\"authors\":\"Guodong Liu, Hui Li, Le Feng, Min Li, Peng Gao, Fang Wang\",\"doi\":\"10.1016/j.exer.2024.110206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the effects of O-linked N-acetylglucosamine modification (O-GlcNAcylation) on astroglial-mesenchymal transition through connexin43 (Cx43) pathway under high-glucose conditions. The primary rat astrocytes were cultured under normal and high-glucose conditions, and level of GFAP, α-SMA and Cx43 was investigated. To explore the influence of O-GlcNAcylation on astroglial-mesenchymal transition, Thiamet G treatment was employed to enhance O-GlcNAcylation, while Alloxan was used to decrease it. Cx43 knockdown was acquired through lentivirus constructs to explore its role in astrocyte transition. The levels of GFAP and α-SMA expressions were examined, while astrocyte proliferation was evaluated using the CCK-8 assay, and migration was assessed through wound healing assays. The results showed that primary rat astrocytes were identified by GFAP antibody staining. Under high-glucose conditions, the levels of GFAP, α-SMA, and Cx43 increased, as confirmed by Western blot and immunofluorescence. O-GlcNAcylation augmentation induced by Thiamet G treatment significantly increased the expression of GFAP, α-SMA, and Cx43 compared to both normal and high-glucose conditions. Conversely, the inhibition of O-GlcNAcylation reversed the high-glucose-induced increase in GFAP and α-SMA. Cx43 knockout led to the downregulation of GFAP and α-SMA compared to high-glucose and O-GlcNAcylation-augmented conditions. Additionally, levels of O-GlcNAcylation and VEGF were reduced in Cx43 knockout group. Consistently, CCK8 and wound healing assays demonstrated that Cx43 knockout could inhibit astrocyte proliferation and migration compared to the high-glucose and O-GlcNAcylation augmented groups. These findings demonstrate that astroglial-mesenchymal transition occurs under high-glucose conditions, and can be promoted by O-GlcNAcylation augmentation, but suppressed by Cx43 knockout. The study underscores the significant role of Cx43 in this transition and its potential involvement in diabetic complications.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110206\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2024.110206\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110206","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
O-GlcNAcylation promotes astroglial-mesenchymal transition via the connexin43 pathway under high-glucose conditions.
This study aimed to investigate the effects of O-linked N-acetylglucosamine modification (O-GlcNAcylation) on astroglial-mesenchymal transition through connexin43 (Cx43) pathway under high-glucose conditions. The primary rat astrocytes were cultured under normal and high-glucose conditions, and level of GFAP, α-SMA and Cx43 was investigated. To explore the influence of O-GlcNAcylation on astroglial-mesenchymal transition, Thiamet G treatment was employed to enhance O-GlcNAcylation, while Alloxan was used to decrease it. Cx43 knockdown was acquired through lentivirus constructs to explore its role in astrocyte transition. The levels of GFAP and α-SMA expressions were examined, while astrocyte proliferation was evaluated using the CCK-8 assay, and migration was assessed through wound healing assays. The results showed that primary rat astrocytes were identified by GFAP antibody staining. Under high-glucose conditions, the levels of GFAP, α-SMA, and Cx43 increased, as confirmed by Western blot and immunofluorescence. O-GlcNAcylation augmentation induced by Thiamet G treatment significantly increased the expression of GFAP, α-SMA, and Cx43 compared to both normal and high-glucose conditions. Conversely, the inhibition of O-GlcNAcylation reversed the high-glucose-induced increase in GFAP and α-SMA. Cx43 knockout led to the downregulation of GFAP and α-SMA compared to high-glucose and O-GlcNAcylation-augmented conditions. Additionally, levels of O-GlcNAcylation and VEGF were reduced in Cx43 knockout group. Consistently, CCK8 and wound healing assays demonstrated that Cx43 knockout could inhibit astrocyte proliferation and migration compared to the high-glucose and O-GlcNAcylation augmented groups. These findings demonstrate that astroglial-mesenchymal transition occurs under high-glucose conditions, and can be promoted by O-GlcNAcylation augmentation, but suppressed by Cx43 knockout. The study underscores the significant role of Cx43 in this transition and its potential involvement in diabetic complications.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.