Jerome Lapointe, Samuel Pouliot, Albert Dupont, Théo Guérineau, Joseph Gaulin, Étienne Pelletier, Jean-Luc Delarosbil, Jonathan Lafrenière-Greig, Loïc Olivier, Stéphane Gagnon, Younes Messaddeq, Réal Vallée
{"title":"利用球面像差的过校正优化非线性材料中fs激光诱导体素。","authors":"Jerome Lapointe, Samuel Pouliot, Albert Dupont, Théo Guérineau, Joseph Gaulin, Étienne Pelletier, Jean-Luc Delarosbil, Jonathan Lafrenière-Greig, Loïc Olivier, Stéphane Gagnon, Younes Messaddeq, Réal Vallée","doi":"10.1364/OL.542171","DOIUrl":null,"url":null,"abstract":"<p><p>In this Letter, over-correction of spherical aberration is used to counteract nonlinear effects such as Kerr self-focusing and plasma effects, resulting in more spherical and small-sized femtosecond laser-inscribed voxels within nonlinear materials. By strategically redirecting marginal focusing rays toward the beginning of the laser modification zone, the induced plasma prevents any rays from causing a structural modification beyond this zone, irrespective of any focus elongation caused by nonlinear effects. The method has been effectively validated across a range of materials, including ZnS, ZnSe, BIG, GeS<sub>4</sub>, and SiO<sub>2</sub>. A significant outcome is the achievement of quasi-spherical and (sub-)micrometer voxels in highly nonlinear materials. These findings open avenues for single-mode active waveguides and high-resolution patterning within nonlinear materials. The experiments are performed using a microscope objective equipped with a correction collar, a widely available tool in laboratories, highlighting the potential and versatility of the technique.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7048-7051"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of fs-laser-induced voxels in nonlinear materials via over-correction of spherical aberration.\",\"authors\":\"Jerome Lapointe, Samuel Pouliot, Albert Dupont, Théo Guérineau, Joseph Gaulin, Étienne Pelletier, Jean-Luc Delarosbil, Jonathan Lafrenière-Greig, Loïc Olivier, Stéphane Gagnon, Younes Messaddeq, Réal Vallée\",\"doi\":\"10.1364/OL.542171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this Letter, over-correction of spherical aberration is used to counteract nonlinear effects such as Kerr self-focusing and plasma effects, resulting in more spherical and small-sized femtosecond laser-inscribed voxels within nonlinear materials. By strategically redirecting marginal focusing rays toward the beginning of the laser modification zone, the induced plasma prevents any rays from causing a structural modification beyond this zone, irrespective of any focus elongation caused by nonlinear effects. The method has been effectively validated across a range of materials, including ZnS, ZnSe, BIG, GeS<sub>4</sub>, and SiO<sub>2</sub>. A significant outcome is the achievement of quasi-spherical and (sub-)micrometer voxels in highly nonlinear materials. These findings open avenues for single-mode active waveguides and high-resolution patterning within nonlinear materials. The experiments are performed using a microscope objective equipped with a correction collar, a widely available tool in laboratories, highlighting the potential and versatility of the technique.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 24\",\"pages\":\"7048-7051\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.542171\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.542171","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Optimization of fs-laser-induced voxels in nonlinear materials via over-correction of spherical aberration.
In this Letter, over-correction of spherical aberration is used to counteract nonlinear effects such as Kerr self-focusing and plasma effects, resulting in more spherical and small-sized femtosecond laser-inscribed voxels within nonlinear materials. By strategically redirecting marginal focusing rays toward the beginning of the laser modification zone, the induced plasma prevents any rays from causing a structural modification beyond this zone, irrespective of any focus elongation caused by nonlinear effects. The method has been effectively validated across a range of materials, including ZnS, ZnSe, BIG, GeS4, and SiO2. A significant outcome is the achievement of quasi-spherical and (sub-)micrometer voxels in highly nonlinear materials. These findings open avenues for single-mode active waveguides and high-resolution patterning within nonlinear materials. The experiments are performed using a microscope objective equipped with a correction collar, a widely available tool in laboratories, highlighting the potential and versatility of the technique.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.