Scott Aronson, Ronald Pagano, Torrey Cullen, Garrett D Cole, Thomas Corbitt
{"title":"用于增强量子限制干涉仪的光学弹簧跟踪。","authors":"Scott Aronson, Ronald Pagano, Torrey Cullen, Garrett D Cole, Thomas Corbitt","doi":"10.1364/OL.540195","DOIUrl":null,"url":null,"abstract":"<p><p>Modern interferometers such as LIGO have achieved sensitivities limited by quantum noise, comprising radiation pressure and shot noise. To mitigate this noise, a static system is employed that minimizes the quantum noise within the measurement band. However, since gravitational wave inspiral signals are a single frequency changing over time, only noise at the chirp frequency needs to be minimized. Here we demonstrate a proof-of-principle experiment of dynamically tracking a target signal using an optical spring, resulting in an increased signal-to-noise ratio (SNR). By injecting white noise to simulate excess shot noise, we found the SNR increased by up to a factor of 40 via dynamical tracking when compared to a static configuration.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"6980-6983"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical spring tracking for enhancing quantum-limited interferometers.\",\"authors\":\"Scott Aronson, Ronald Pagano, Torrey Cullen, Garrett D Cole, Thomas Corbitt\",\"doi\":\"10.1364/OL.540195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern interferometers such as LIGO have achieved sensitivities limited by quantum noise, comprising radiation pressure and shot noise. To mitigate this noise, a static system is employed that minimizes the quantum noise within the measurement band. However, since gravitational wave inspiral signals are a single frequency changing over time, only noise at the chirp frequency needs to be minimized. Here we demonstrate a proof-of-principle experiment of dynamically tracking a target signal using an optical spring, resulting in an increased signal-to-noise ratio (SNR). By injecting white noise to simulate excess shot noise, we found the SNR increased by up to a factor of 40 via dynamical tracking when compared to a static configuration.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 24\",\"pages\":\"6980-6983\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.540195\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.540195","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Optical spring tracking for enhancing quantum-limited interferometers.
Modern interferometers such as LIGO have achieved sensitivities limited by quantum noise, comprising radiation pressure and shot noise. To mitigate this noise, a static system is employed that minimizes the quantum noise within the measurement band. However, since gravitational wave inspiral signals are a single frequency changing over time, only noise at the chirp frequency needs to be minimized. Here we demonstrate a proof-of-principle experiment of dynamically tracking a target signal using an optical spring, resulting in an increased signal-to-noise ratio (SNR). By injecting white noise to simulate excess shot noise, we found the SNR increased by up to a factor of 40 via dynamical tracking when compared to a static configuration.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.