Lange Zhao, Shulin Wang, Chengzhi Qin, Zhuoxiong Liu, Chenyu Liu, Xinyuan Hu, Yinglan Li, Bing Wang, Peixiang Lu
{"title":"合成时空晶格中具有工程浮动能带的布洛赫-齐纳振荡。","authors":"Lange Zhao, Shulin Wang, Chengzhi Qin, Zhuoxiong Liu, Chenyu Liu, Xinyuan Hu, Yinglan Li, Bing Wang, Peixiang Lu","doi":"10.1364/OL.543457","DOIUrl":null,"url":null,"abstract":"<p><p>Here we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and <i>π</i>-gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited. As an application, the temporal Mach-Zehnder interferometer utilizing BZOs is realized, where the output patterns could be modulated by the coupling rate of the synthetic lattice. This work lays the foundation for exploring BZO physics with synthetic dimensions, which may find applications in temporal pulse controlling and optical signal processing.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7028-7031"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloch-Zener oscillation with engineered Floquet energy bands in synthetic temporal lattices.\",\"authors\":\"Lange Zhao, Shulin Wang, Chengzhi Qin, Zhuoxiong Liu, Chenyu Liu, Xinyuan Hu, Yinglan Li, Bing Wang, Peixiang Lu\",\"doi\":\"10.1364/OL.543457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and <i>π</i>-gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited. As an application, the temporal Mach-Zehnder interferometer utilizing BZOs is realized, where the output patterns could be modulated by the coupling rate of the synthetic lattice. This work lays the foundation for exploring BZO physics with synthetic dimensions, which may find applications in temporal pulse controlling and optical signal processing.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 24\",\"pages\":\"7028-7031\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.543457\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.543457","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Bloch-Zener oscillation with engineered Floquet energy bands in synthetic temporal lattices.
Here we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and π-gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited. As an application, the temporal Mach-Zehnder interferometer utilizing BZOs is realized, where the output patterns could be modulated by the coupling rate of the synthetic lattice. This work lays the foundation for exploring BZO physics with synthetic dimensions, which may find applications in temporal pulse controlling and optical signal processing.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.