Raghavendra R B, Sathish Reddy, Dalli Kumari, Abhishek K J, Nagendra G, Gururaj K J, Nirajan E, Harish K N
{"title":"用于同时检测食品样品中氯霉素(CP)和呋喃唑酮(FZ)毒性残留的 Fmoc-Pro-Phe-OMe 二肽碳传感器。","authors":"Raghavendra R B, Sathish Reddy, Dalli Kumari, Abhishek K J, Nagendra G, Gururaj K J, Nirajan E, Harish K N","doi":"10.1080/03601234.2024.2437925","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we fabricated the Fmoc-Pro-Phe-OMe modified carbon paste electrode (FPPO/MCPE) and used it for electrochemical detection of CP and FZ in a 0.1 M phosphate buffer solution (pH = 7). We characterized the Fmoc-Pro-Phe-OMe and applied it for the electrochemical detection of CP and FZ. The Mass spectroscopy, <sup>1</sup>HNMR, and FTIR measurements confirm the Fmoc-Pro-Phe-OMe chemical structure. Studying electrochemical sensor characteristics, variation of scan rate parameters, and electrode surface area is crucial for understanding and optimizing the performance of modified and unmodified carbon paste electrodes. The FPPO/MCPE-modified carbon paste electrode has better sensing capabilities than the unmodified bare carbon paste electrode (BCPE). The FPPO/MCPE sensor has two linear ranges: 50-450 μM (CP) with a detection limit of 0.014 μM and 50-450 μM (FZ) with a detection limit of 0.015 μM. The FPPO/MCPE sensor is highly sensitive, measuring 4.25 µA/µM/cm<sup>2</sup> for CP and 4.1 µA/µM/cm<sup>2</sup> for FZ. Scan rate and concentration tests demonstrate that the oxidation of CP and FZ is a diffusion-controlled electrode process. The FPPO/MCPE sensor also demonstrates excellent repeatability, reproducibility, stability, and selectivity for detection of CP and FZ. The use of FPPO/MCPE-sensor is demonstrated for the detection of FZ and CP in milk and honey samples.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":" ","pages":"1-14"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fmoc-Pro-Phe-OMe dipeptide carbon sensor for simultaneous detection of chloramphenicol (CP) and furazolidone (FZ) toxic residues in food samples.\",\"authors\":\"Raghavendra R B, Sathish Reddy, Dalli Kumari, Abhishek K J, Nagendra G, Gururaj K J, Nirajan E, Harish K N\",\"doi\":\"10.1080/03601234.2024.2437925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we fabricated the Fmoc-Pro-Phe-OMe modified carbon paste electrode (FPPO/MCPE) and used it for electrochemical detection of CP and FZ in a 0.1 M phosphate buffer solution (pH = 7). We characterized the Fmoc-Pro-Phe-OMe and applied it for the electrochemical detection of CP and FZ. The Mass spectroscopy, <sup>1</sup>HNMR, and FTIR measurements confirm the Fmoc-Pro-Phe-OMe chemical structure. Studying electrochemical sensor characteristics, variation of scan rate parameters, and electrode surface area is crucial for understanding and optimizing the performance of modified and unmodified carbon paste electrodes. The FPPO/MCPE-modified carbon paste electrode has better sensing capabilities than the unmodified bare carbon paste electrode (BCPE). The FPPO/MCPE sensor has two linear ranges: 50-450 μM (CP) with a detection limit of 0.014 μM and 50-450 μM (FZ) with a detection limit of 0.015 μM. The FPPO/MCPE sensor is highly sensitive, measuring 4.25 µA/µM/cm<sup>2</sup> for CP and 4.1 µA/µM/cm<sup>2</sup> for FZ. Scan rate and concentration tests demonstrate that the oxidation of CP and FZ is a diffusion-controlled electrode process. The FPPO/MCPE sensor also demonstrates excellent repeatability, reproducibility, stability, and selectivity for detection of CP and FZ. The use of FPPO/MCPE-sensor is demonstrated for the detection of FZ and CP in milk and honey samples.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2024.2437925\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2437925","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fmoc-Pro-Phe-OMe dipeptide carbon sensor for simultaneous detection of chloramphenicol (CP) and furazolidone (FZ) toxic residues in food samples.
In this work, we fabricated the Fmoc-Pro-Phe-OMe modified carbon paste electrode (FPPO/MCPE) and used it for electrochemical detection of CP and FZ in a 0.1 M phosphate buffer solution (pH = 7). We characterized the Fmoc-Pro-Phe-OMe and applied it for the electrochemical detection of CP and FZ. The Mass spectroscopy, 1HNMR, and FTIR measurements confirm the Fmoc-Pro-Phe-OMe chemical structure. Studying electrochemical sensor characteristics, variation of scan rate parameters, and electrode surface area is crucial for understanding and optimizing the performance of modified and unmodified carbon paste electrodes. The FPPO/MCPE-modified carbon paste electrode has better sensing capabilities than the unmodified bare carbon paste electrode (BCPE). The FPPO/MCPE sensor has two linear ranges: 50-450 μM (CP) with a detection limit of 0.014 μM and 50-450 μM (FZ) with a detection limit of 0.015 μM. The FPPO/MCPE sensor is highly sensitive, measuring 4.25 µA/µM/cm2 for CP and 4.1 µA/µM/cm2 for FZ. Scan rate and concentration tests demonstrate that the oxidation of CP and FZ is a diffusion-controlled electrode process. The FPPO/MCPE sensor also demonstrates excellent repeatability, reproducibility, stability, and selectivity for detection of CP and FZ. The use of FPPO/MCPE-sensor is demonstrated for the detection of FZ and CP in milk and honey samples.