Anica Hamer, Frank Vewinger, Thorsten Peters, Michael H Frosz, Simon Stellmer
{"title":"Frequency conversion in a hydrogen-filled hollow-core fiber using continuous-wave fields.","authors":"Anica Hamer, Frank Vewinger, Thorsten Peters, Michael H Frosz, Simon Stellmer","doi":"10.1364/OL.541292","DOIUrl":null,"url":null,"abstract":"<p><p>In large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state. Currently, nonlinear crystals are utilized for this process. However, their performance is limited by their acceptance bandwidth, tunability, polarization sensitivity, and undesired background emission. A promising alternative is based on stimulated Raman scattering (SRS) in gases. Here, we demonstrate polarization-preserving frequency conversion in a hydrogen-filled antiresonant hollow-core fiber. This approach holds promises for seamless integration into optical fiber networks and interfaces to single emitters. Disparate from related experiments that employ a pulsed pump field, we here take advantage of two coherent continuous-wave pump fields.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"6952-6955"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.541292","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Frequency conversion in a hydrogen-filled hollow-core fiber using continuous-wave fields.
In large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state. Currently, nonlinear crystals are utilized for this process. However, their performance is limited by their acceptance bandwidth, tunability, polarization sensitivity, and undesired background emission. A promising alternative is based on stimulated Raman scattering (SRS) in gases. Here, we demonstrate polarization-preserving frequency conversion in a hydrogen-filled antiresonant hollow-core fiber. This approach holds promises for seamless integration into optical fiber networks and interfaces to single emitters. Disparate from related experiments that employ a pulsed pump field, we here take advantage of two coherent continuous-wave pump fields.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.