V S Lamego, G T C Cruz, D R A B Lima, S M Al-Kuwari, J A O Huguenin
{"title":"带有自旋轨道模式的量子随机漫步分布向经典随机漫步分布的过渡。","authors":"V S Lamego, G T C Cruz, D R A B Lima, S M Al-Kuwari, J A O Huguenin","doi":"10.1364/OL.537273","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum walks (QW) offer a speed-up advantage over random walks in quantum search applications. We present an experimental study of the transition from quantum-to-classical random walk using an emulation of the decoherence process for polarization qubits that exploits maximally non-separable spin-orbit modes of an intense laser beam for the first, to the best of our knowledge, time. We are able to continuously control the input polarization mode in an all-optical quantum walk circuit to observe transitions associated with quantum, quantum stochastic, and classical random walk distributions. The results are in agreement with theoretical expectations.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"6904-6907"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition from quantum-to-classical random walk distributions with spin-orbit modes.\",\"authors\":\"V S Lamego, G T C Cruz, D R A B Lima, S M Al-Kuwari, J A O Huguenin\",\"doi\":\"10.1364/OL.537273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum walks (QW) offer a speed-up advantage over random walks in quantum search applications. We present an experimental study of the transition from quantum-to-classical random walk using an emulation of the decoherence process for polarization qubits that exploits maximally non-separable spin-orbit modes of an intense laser beam for the first, to the best of our knowledge, time. We are able to continuously control the input polarization mode in an all-optical quantum walk circuit to observe transitions associated with quantum, quantum stochastic, and classical random walk distributions. The results are in agreement with theoretical expectations.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 24\",\"pages\":\"6904-6907\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.537273\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.537273","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Transition from quantum-to-classical random walk distributions with spin-orbit modes.
Quantum walks (QW) offer a speed-up advantage over random walks in quantum search applications. We present an experimental study of the transition from quantum-to-classical random walk using an emulation of the decoherence process for polarization qubits that exploits maximally non-separable spin-orbit modes of an intense laser beam for the first, to the best of our knowledge, time. We are able to continuously control the input polarization mode in an all-optical quantum walk circuit to observe transitions associated with quantum, quantum stochastic, and classical random walk distributions. The results are in agreement with theoretical expectations.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.