{"title":"拟南芥在 ABA 信号作用下通过负调控 MYB50 控制根系生长。","authors":"Kosuke Mase, Yukino Kamiya, Satomi Sakaoka, Atsushi Morikami, Hironaka Tsukagoshi","doi":"10.1093/bbb/zbae195","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth is finely tuned by environmental changes, with abscisic acid (ABA) playing a key role in balancing stress tolerance and growth regulation. The target genes of MYB50, which regulate root growth, include genes that respond to ABA; however, the precise role of MYB50 in ABA signaling remains unclear. Therefore, this study aimed to elucidate the function of MYB50 under ABA signaling. Our experiments demonstrated that ABA treatment reduced MYB50 expression and promoted the degradation of MYB50 protein. This degradation alleviates the inhibitory effects of MYB50 on root growth. Furthermore, ABA differentially regulates MYB50 compared with ABI5, another key transcription factor involved in root growth under ABA signaling, suggesting that ABA uses distinct regulatory pathways for root growth. Our study suggests that ABA controls root growth by modulating MYB50 at both the transcriptional and post-translational levels, thus ensuring balanced root development in response to ABA.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root growth control by negative regulation of MYB50 under ABA signaling in Arabidopsis.\",\"authors\":\"Kosuke Mase, Yukino Kamiya, Satomi Sakaoka, Atsushi Morikami, Hironaka Tsukagoshi\",\"doi\":\"10.1093/bbb/zbae195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant growth is finely tuned by environmental changes, with abscisic acid (ABA) playing a key role in balancing stress tolerance and growth regulation. The target genes of MYB50, which regulate root growth, include genes that respond to ABA; however, the precise role of MYB50 in ABA signaling remains unclear. Therefore, this study aimed to elucidate the function of MYB50 under ABA signaling. Our experiments demonstrated that ABA treatment reduced MYB50 expression and promoted the degradation of MYB50 protein. This degradation alleviates the inhibitory effects of MYB50 on root growth. Furthermore, ABA differentially regulates MYB50 compared with ABI5, another key transcription factor involved in root growth under ABA signaling, suggesting that ABA uses distinct regulatory pathways for root growth. Our study suggests that ABA controls root growth by modulating MYB50 at both the transcriptional and post-translational levels, thus ensuring balanced root development in response to ABA.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae195\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae195","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Root growth control by negative regulation of MYB50 under ABA signaling in Arabidopsis.
Plant growth is finely tuned by environmental changes, with abscisic acid (ABA) playing a key role in balancing stress tolerance and growth regulation. The target genes of MYB50, which regulate root growth, include genes that respond to ABA; however, the precise role of MYB50 in ABA signaling remains unclear. Therefore, this study aimed to elucidate the function of MYB50 under ABA signaling. Our experiments demonstrated that ABA treatment reduced MYB50 expression and promoted the degradation of MYB50 protein. This degradation alleviates the inhibitory effects of MYB50 on root growth. Furthermore, ABA differentially regulates MYB50 compared with ABI5, another key transcription factor involved in root growth under ABA signaling, suggesting that ABA uses distinct regulatory pathways for root growth. Our study suggests that ABA controls root growth by modulating MYB50 at both the transcriptional and post-translational levels, thus ensuring balanced root development in response to ABA.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).