慢性内脏疼痛的病理机制和临床治疗进展。

IF 2.8 3区 医学 Q2 NEUROSCIENCES Molecular Pain Pub Date : 2024-01-01 DOI:10.1177/17448069241305942
Yong-Chang Li, Fu-Chao Zhang, Timothy W Xu, Rui-Xia Weng, Hong-Hong Zhang, Qian-Qian Chen, Shufen Hu, Rong Gao, Rui Li, Guang-Yin Xu
{"title":"慢性内脏疼痛的病理机制和临床治疗进展。","authors":"Yong-Chang Li, Fu-Chao Zhang, Timothy W Xu, Rui-Xia Weng, Hong-Hong Zhang, Qian-Qian Chen, Shufen Hu, Rong Gao, Rui Li, Guang-Yin Xu","doi":"10.1177/17448069241305942","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"20 ","pages":"17448069241305942"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in the pathological mechanisms and clinical treatments of chronic visceral pain.\",\"authors\":\"Yong-Chang Li, Fu-Chao Zhang, Timothy W Xu, Rui-Xia Weng, Hong-Hong Zhang, Qian-Qian Chen, Shufen Hu, Rong Gao, Rui Li, Guang-Yin Xu\",\"doi\":\"10.1177/17448069241305942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":\"20 \",\"pages\":\"17448069241305942\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069241305942\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069241305942","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

慢性内脏疼痛源于内脏器官,经常与肠易激综合征(IBS)等功能性胃肠道疾病相关。由于内脏疼痛的基本机制尚不明确,临床治疗往往有限且无效。对内脏疼痛发病机制的全面研究以及个性化治疗策略的开发,对于推进治疗方案至关重要。研究表明,嘌呤能受体和神经回路功能的失衡与内脏痛的发病密切相关。在这篇综述中,我们将以功能性胃肠疾病为案例,探讨内脏痛的病因和病理机制,重点关注离子通道、表观遗传因素和神经回路。最后,我们将总结和评估旨在控制内脏疼痛的新兴治疗方法和潜在举措。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in the pathological mechanisms and clinical treatments of chronic visceral pain.

Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
期刊最新文献
EXPRESS: Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part. 1: Behavior and single-cell in vivo electrophysiology. EXPRESS: AMPK Activation Mitigates Inflammatory Pain by Modulating STAT3 Phosphorylation in Inflamed Tissue Macrophages of Adult Male Mice. EXPRESS: Depression and anxiety in Chinese patients hospitalized with primary headache: A cross-sectional multicenter study. EXPRESS: Gut Microbiota-Derived Short-chain Fatty Acid Suppresses the Excitability of Rat Nociceptive Secondary Neurons via G-protein-coupled receptor 41 Signaling. EXPRESS: SGK1-HDAC4-HMGB1 Signaling pathway in the spinal cord dorsal horn participates in diabetic neuropathic pain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1