纳米材料的氧化潜能:血清铁还原能力(FRAS)测定的优化高通量方案和实验室间比较。

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2024-12-01 Epub Date: 2024-12-14 DOI:10.1080/17435390.2024.2438116
Nienke Ruijter, Matthew Boyles, Hedwig Braakhuis, Rafael Ayerbe Algaba, Morgan Lofty, Veronica di Battista, Wendel Wohlleben, Flemming R Cassee, Ana Candalija
{"title":"纳米材料的氧化潜能:血清铁还原能力(FRAS)测定的优化高通量方案和实验室间比较。","authors":"Nienke Ruijter, Matthew Boyles, Hedwig Braakhuis, Rafael Ayerbe Algaba, Morgan Lofty, Veronica di Battista, Wendel Wohlleben, Flemming R Cassee, Ana Candalija","doi":"10.1080/17435390.2024.2438116","DOIUrl":null,"url":null,"abstract":"<p><p>Successful implementation of Safe and Sustainable by Design (SSbD) and grouping approaches requires simple, reliable, and cost-effective assays to facilitate hazard screening at early stages of product development. Especially for nanomaterials (NMs), which exist in many different forms, efficient hazard screening is of utmost importance. Oxidative potential (OP), which is the ability of a substance to induce reactive oxygen species (ROS), is an important indicator of the potential to induce oxidative damage and oxidative stress. A frequently used assay to measure OP of NMs is the ferric reducing ability of serum (FRAS) assay. Although the widely used cuvette-based FRAS protocol is considered a robust assay, its low throughput makes the screening of multiple materials challenging. Here, we adapt the original cuvette-based FRAS assay protocol, into a 96-well format and thereby improve its user-friendliness, simplicity, and screening capacity. The adapted protocol allows for the screening of multiple NMs per plate, and multiple plates per day, where the original protocol allows for the screening of one NM dose-range per day. When comparing the two protocols, the adapted protocol showed slightly decreased assay precision as compared to the original protocol. The results obtained with the adapted protocol were compared using eight reference NMs in an interlaboratory study and showed acceptably low intra- and interlaboratory variation. We conclude that the adapted FRAS assay protocol is suitable to be used for hazard screening to facilitate SSbD and grouping approaches.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"724-738"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The oxidative potential of nanomaterials: an optimized high-throughput protocol and interlaboratory comparison for the ferric reducing ability of serum (FRAS) assay.\",\"authors\":\"Nienke Ruijter, Matthew Boyles, Hedwig Braakhuis, Rafael Ayerbe Algaba, Morgan Lofty, Veronica di Battista, Wendel Wohlleben, Flemming R Cassee, Ana Candalija\",\"doi\":\"10.1080/17435390.2024.2438116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Successful implementation of Safe and Sustainable by Design (SSbD) and grouping approaches requires simple, reliable, and cost-effective assays to facilitate hazard screening at early stages of product development. Especially for nanomaterials (NMs), which exist in many different forms, efficient hazard screening is of utmost importance. Oxidative potential (OP), which is the ability of a substance to induce reactive oxygen species (ROS), is an important indicator of the potential to induce oxidative damage and oxidative stress. A frequently used assay to measure OP of NMs is the ferric reducing ability of serum (FRAS) assay. Although the widely used cuvette-based FRAS protocol is considered a robust assay, its low throughput makes the screening of multiple materials challenging. Here, we adapt the original cuvette-based FRAS assay protocol, into a 96-well format and thereby improve its user-friendliness, simplicity, and screening capacity. The adapted protocol allows for the screening of multiple NMs per plate, and multiple plates per day, where the original protocol allows for the screening of one NM dose-range per day. When comparing the two protocols, the adapted protocol showed slightly decreased assay precision as compared to the original protocol. The results obtained with the adapted protocol were compared using eight reference NMs in an interlaboratory study and showed acceptably low intra- and interlaboratory variation. We conclude that the adapted FRAS assay protocol is suitable to be used for hazard screening to facilitate SSbD and grouping approaches.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"724-738\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2438116\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2438116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

安全与可持续设计(SSbD)和分组方法的成功实施需要简单、可靠和具有成本效益的分析,以便在产品开发的早期阶段进行危害筛选。特别是对于以多种形式存在的纳米材料,有效的危害筛选至关重要。氧化电位(Oxidative potential, OP)是物质诱导活性氧(reactive oxygen species, ROS)的能力,是衡量物质诱导氧化损伤和氧化应激潜能的重要指标。一种常用的测定NMs OP的方法是血清铁还原能力(FRAS)测定。尽管广泛使用的基于试管的FRAS方案被认为是一种可靠的分析方法,但其低通量使得多种材料的筛选具有挑战性。在这里,我们将原来的基于试管的FRAS分析方案改编为96孔格式,从而提高了其用户友好性、简单性和筛选能力。调整后的方案允许每个板筛选多个NM,每天筛选多个板,而原始方案允许每天筛选一个NM剂量范围。在比较两种方案时,与原始方案相比,调整后的方案显示出略微降低的测定精度。在一项实验室间研究中,与八个参考NMs进行了比较,结果显示实验室内和实验室间的差异可接受地低。我们得出结论,改编的FRAS分析方案适合用于危险筛选,以促进SSbD和分组方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The oxidative potential of nanomaterials: an optimized high-throughput protocol and interlaboratory comparison for the ferric reducing ability of serum (FRAS) assay.

Successful implementation of Safe and Sustainable by Design (SSbD) and grouping approaches requires simple, reliable, and cost-effective assays to facilitate hazard screening at early stages of product development. Especially for nanomaterials (NMs), which exist in many different forms, efficient hazard screening is of utmost importance. Oxidative potential (OP), which is the ability of a substance to induce reactive oxygen species (ROS), is an important indicator of the potential to induce oxidative damage and oxidative stress. A frequently used assay to measure OP of NMs is the ferric reducing ability of serum (FRAS) assay. Although the widely used cuvette-based FRAS protocol is considered a robust assay, its low throughput makes the screening of multiple materials challenging. Here, we adapt the original cuvette-based FRAS assay protocol, into a 96-well format and thereby improve its user-friendliness, simplicity, and screening capacity. The adapted protocol allows for the screening of multiple NMs per plate, and multiple plates per day, where the original protocol allows for the screening of one NM dose-range per day. When comparing the two protocols, the adapted protocol showed slightly decreased assay precision as compared to the original protocol. The results obtained with the adapted protocol were compared using eight reference NMs in an interlaboratory study and showed acceptably low intra- and interlaboratory variation. We conclude that the adapted FRAS assay protocol is suitable to be used for hazard screening to facilitate SSbD and grouping approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Knock-out mouse models and single particle ICP-MS reveal that SP-D and SP-A deficiency reduces agglomeration of inhaled gold nanoparticles in vivo without significant changes to overall lung clearance. Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines. Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model. Probing the effects of dextran-coated CeO2 nanoparticles on lung fibroblasts using multivariate single-cell Raman spectroscopy. Toxicological impact of silver nanoparticles on soil microbial indicators in contaminated soil (pot experiment).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1