Peiyu Guo , Chenjun Bai , Lihui Xuan , Wensen Yi , Jinhua Luo , Huiji Pan , Weifan Chen , Hua Guan , Pingkun Zhou , Ruixue Huang
{"title":"基于肠道三维有机体的毒理学评估揭示了环境问题 低剂量纳米微塑料(NPs)暴露会加重辐射引起的肠道损伤。","authors":"Peiyu Guo , Chenjun Bai , Lihui Xuan , Wensen Yi , Jinhua Luo , Huiji Pan , Weifan Chen , Hua Guan , Pingkun Zhou , Ruixue Huang","doi":"10.1016/j.chemosphere.2024.143922","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Intestinal organoid has emerged as an energetic tool for modeling intestine physiology and relevant diseases in vitro. Here, we reported that development of intestinal organoids could be used to explore the toxicology mechanism for combination effects of low dose nanoplastic (NPs) chronic exposure and acute radiation on intestine injury, the two classical chemical and physical substances.</div></div><div><h3>Methods</h3><div>Integrated acute radiation-induced intestine injury model in vivo and mice intestinal organoids in vitro were conducted in this study.</div></div><div><h3>Results</h3><div>First, through in vivo study, we found low dose NPs exposure could aggravate acute radiation-induced intestine injury including exacerbating damaged intestinal epithelial structure, shortened and fractured intestinal villi. Second, using an intestinal organoid model, we observed that low-dose NPs reduced radiation-induced proliferation and exacerbated inflammatory damage, which promoted inflammatory damage through elevated TGF-β1 expression, increased Smad3 phosphorylation, and diminished Smad7 expression. Furthermore, immunohistochemical and Western blot analyses of intestinal tissues further confirmed that low-dose nanoplastics enhance radiation-induced intestinal damage via activation of the TGF-β1/p-Smad3 signaling pathway.</div></div><div><h3>Conclusion</h3><div>This study demonstrates that low-dose NPs may exacerbate the radiation-induced intestinal damage and inflammation process in vivo and in vitro. Our study highlights, for the first time, the potential for intestine organoids serving as powerful tool for explore the combination effects of two chemical and physical substances in toxicology investigation.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"370 ","pages":"Article 143922"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicological assessments based on intestine 3D organoids reveal environmental low-dose nanosized microplastics (NPs) exposure aggravates radiation-induced intestine injury\",\"authors\":\"Peiyu Guo , Chenjun Bai , Lihui Xuan , Wensen Yi , Jinhua Luo , Huiji Pan , Weifan Chen , Hua Guan , Pingkun Zhou , Ruixue Huang\",\"doi\":\"10.1016/j.chemosphere.2024.143922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Intestinal organoid has emerged as an energetic tool for modeling intestine physiology and relevant diseases in vitro. Here, we reported that development of intestinal organoids could be used to explore the toxicology mechanism for combination effects of low dose nanoplastic (NPs) chronic exposure and acute radiation on intestine injury, the two classical chemical and physical substances.</div></div><div><h3>Methods</h3><div>Integrated acute radiation-induced intestine injury model in vivo and mice intestinal organoids in vitro were conducted in this study.</div></div><div><h3>Results</h3><div>First, through in vivo study, we found low dose NPs exposure could aggravate acute radiation-induced intestine injury including exacerbating damaged intestinal epithelial structure, shortened and fractured intestinal villi. Second, using an intestinal organoid model, we observed that low-dose NPs reduced radiation-induced proliferation and exacerbated inflammatory damage, which promoted inflammatory damage through elevated TGF-β1 expression, increased Smad3 phosphorylation, and diminished Smad7 expression. Furthermore, immunohistochemical and Western blot analyses of intestinal tissues further confirmed that low-dose nanoplastics enhance radiation-induced intestinal damage via activation of the TGF-β1/p-Smad3 signaling pathway.</div></div><div><h3>Conclusion</h3><div>This study demonstrates that low-dose NPs may exacerbate the radiation-induced intestinal damage and inflammation process in vivo and in vitro. Our study highlights, for the first time, the potential for intestine organoids serving as powerful tool for explore the combination effects of two chemical and physical substances in toxicology investigation.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"370 \",\"pages\":\"Article 143922\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524028303\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524028303","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Toxicological assessments based on intestine 3D organoids reveal environmental low-dose nanosized microplastics (NPs) exposure aggravates radiation-induced intestine injury
Background
Intestinal organoid has emerged as an energetic tool for modeling intestine physiology and relevant diseases in vitro. Here, we reported that development of intestinal organoids could be used to explore the toxicology mechanism for combination effects of low dose nanoplastic (NPs) chronic exposure and acute radiation on intestine injury, the two classical chemical and physical substances.
Methods
Integrated acute radiation-induced intestine injury model in vivo and mice intestinal organoids in vitro were conducted in this study.
Results
First, through in vivo study, we found low dose NPs exposure could aggravate acute radiation-induced intestine injury including exacerbating damaged intestinal epithelial structure, shortened and fractured intestinal villi. Second, using an intestinal organoid model, we observed that low-dose NPs reduced radiation-induced proliferation and exacerbated inflammatory damage, which promoted inflammatory damage through elevated TGF-β1 expression, increased Smad3 phosphorylation, and diminished Smad7 expression. Furthermore, immunohistochemical and Western blot analyses of intestinal tissues further confirmed that low-dose nanoplastics enhance radiation-induced intestinal damage via activation of the TGF-β1/p-Smad3 signaling pathway.
Conclusion
This study demonstrates that low-dose NPs may exacerbate the radiation-induced intestinal damage and inflammation process in vivo and in vitro. Our study highlights, for the first time, the potential for intestine organoids serving as powerful tool for explore the combination effects of two chemical and physical substances in toxicology investigation.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.