ABO*B变异的血清学和分子鉴定。ABO糖基转移酶01基因与Bw表型相关1例报告

Xiaoshuai Li, Qiushi Wang
{"title":"ABO*B变异的血清学和分子鉴定。ABO糖基转移酶01基因与Bw表型相关1例报告","authors":"Xiaoshuai Li, Qiushi Wang","doi":"10.1093/labmed/lmae086","DOIUrl":null,"url":null,"abstract":"<p><p>AB antigen is formed by glycosyltransferase enzyme, which catalyzes the corresponding substrates to be connected to the galactose of the precursor substance H antigen. To study the effect of the α-1,3-D galactosyltransferase (GTB) gene mutation on B antigen expression, we explored its molecular mechanism by combining molecular biological methods with bioinformatics. The ABO blood type of the patients was identified using conventional serologic methods, and the polymerase chain reaction (PCR) products of exons 1-7 of the ABO gene were directly sequenced using gene-specific primers and direct sequencing. Proteins in the secretory supernatant of transfected cells were collected in vitro, and GTB content was quantitatively analyzed using western blotting. Bioinformatics software was used to simulate the 3-dimensional structure of the mutant protein. In this case, the patient's serologic test results revealed subtype B. Gene sequencing results confirmed a mutation at base 278 of exon 6. The mutation (c.278C>T) changed the 93rd amino acid of the protein polypeptide chain from proline to leucine (p.P93L). The variant p.P93L did not affect the expression and secretion of GTB, but affected enzyme activity and stability, ultimately manifesting as weakened expression of the B antigen and reduced affinity.</p>","PeriodicalId":94124,"journal":{"name":"Laboratory medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serologic and molecular identification of the variation on ABO*B.01 gene in ABO glycosyltransferases associated with Bw phenotype: a case report.\",\"authors\":\"Xiaoshuai Li, Qiushi Wang\",\"doi\":\"10.1093/labmed/lmae086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AB antigen is formed by glycosyltransferase enzyme, which catalyzes the corresponding substrates to be connected to the galactose of the precursor substance H antigen. To study the effect of the α-1,3-D galactosyltransferase (GTB) gene mutation on B antigen expression, we explored its molecular mechanism by combining molecular biological methods with bioinformatics. The ABO blood type of the patients was identified using conventional serologic methods, and the polymerase chain reaction (PCR) products of exons 1-7 of the ABO gene were directly sequenced using gene-specific primers and direct sequencing. Proteins in the secretory supernatant of transfected cells were collected in vitro, and GTB content was quantitatively analyzed using western blotting. Bioinformatics software was used to simulate the 3-dimensional structure of the mutant protein. In this case, the patient's serologic test results revealed subtype B. Gene sequencing results confirmed a mutation at base 278 of exon 6. The mutation (c.278C>T) changed the 93rd amino acid of the protein polypeptide chain from proline to leucine (p.P93L). The variant p.P93L did not affect the expression and secretion of GTB, but affected enzyme activity and stability, ultimately manifesting as weakened expression of the B antigen and reduced affinity.</p>\",\"PeriodicalId\":94124,\"journal\":{\"name\":\"Laboratory medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/labmed/lmae086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/labmed/lmae086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AB抗原由糖基转移酶形成,该酶催化相应的底物与前体物质H抗原的半乳糖连接。为了研究α-1,3- d半乳糖转移酶(GTB)基因突变对B抗原表达的影响,我们采用分子生物学和生物信息学相结合的方法探索其分子机制。采用常规血清学方法鉴定患者ABO血型,采用基因特异性引物和直接测序法直接测序ABO基因外显子1-7的聚合酶链反应产物。体外收集转染细胞分泌上清蛋白,采用western blotting定量分析GTB含量。利用生物信息学软件模拟突变蛋白的三维结构。在本例中,患者血清学检测结果显示为b亚型。基因测序结果证实6外显子278碱基突变。突变(c.278C >t)使蛋白质多肽链的第93个氨基酸由脯氨酸变为亮氨酸(p.P93L)。变异体p.P93L不影响GTB的表达和分泌,但影响酶的活性和稳定性,最终表现为B抗原表达减弱,亲和力降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Serologic and molecular identification of the variation on ABO*B.01 gene in ABO glycosyltransferases associated with Bw phenotype: a case report.

AB antigen is formed by glycosyltransferase enzyme, which catalyzes the corresponding substrates to be connected to the galactose of the precursor substance H antigen. To study the effect of the α-1,3-D galactosyltransferase (GTB) gene mutation on B antigen expression, we explored its molecular mechanism by combining molecular biological methods with bioinformatics. The ABO blood type of the patients was identified using conventional serologic methods, and the polymerase chain reaction (PCR) products of exons 1-7 of the ABO gene were directly sequenced using gene-specific primers and direct sequencing. Proteins in the secretory supernatant of transfected cells were collected in vitro, and GTB content was quantitatively analyzed using western blotting. Bioinformatics software was used to simulate the 3-dimensional structure of the mutant protein. In this case, the patient's serologic test results revealed subtype B. Gene sequencing results confirmed a mutation at base 278 of exon 6. The mutation (c.278C>T) changed the 93rd amino acid of the protein polypeptide chain from proline to leucine (p.P93L). The variant p.P93L did not affect the expression and secretion of GTB, but affected enzyme activity and stability, ultimately manifesting as weakened expression of the B antigen and reduced affinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Serologic detection of regenerating protein I alpha by time-resolved fluoroimmunoassay and its clinical value in gastric cancer. Jerk (d(acceleration)/dt) as an operative variable in pneumatic tube transport (PTT). Therapeutic plasma exchange for hyperviscosity syndrome in IgA multiple myeloma. Navigating the conundrum of co-existing autoantibodies and alloantibodies in a case of Evans syndrome. Red blood cell alloimmunization in transfused patients with myelodysplastic syndromes: a retrospective study from northern China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1