抗菌药耐药性的新方法:重症监护病房耐碳青霉烯类克雷伯氏菌的机器学习预测。

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2024-12-07 DOI:10.1016/j.ijmedinf.2024.105751
V. Alparslan , Ö. Güler , B. İnner , A. Düzgün , N. Baykara , A. Kuş
{"title":"抗菌药耐药性的新方法:重症监护病房耐碳青霉烯类克雷伯氏菌的机器学习预测。","authors":"V. Alparslan ,&nbsp;Ö. Güler ,&nbsp;B. İnner ,&nbsp;A. Düzgün ,&nbsp;N. Baykara ,&nbsp;A. Kuş","doi":"10.1016/j.ijmedinf.2024.105751","DOIUrl":null,"url":null,"abstract":"<div><div>This study was conducted at Kocaeli University Hospital in Turkey and aimed to predict carbapenem-resistant <em>Klebsiella pneumoniae</em> infection in intensive care units using the Extreme Gradient Boosting (XGBoost) algorithm, a form of artificial intelligence. This was a retrospective case-control study involving 289 patients, including 159 carbapenem-resistant and 130 carbapenem-susceptible individuals as controls. The model’s predictive analysis combined a diverse range of demographic, clinical, and laboratory data, resulting in an average accuracy of 83.0%, precision of 83%, sensitivity of 88%, F1 score of 85%, and Matthews Correlation Coefficient of 0.66. Prolonged hospitalization and intensive care unit stay were significant predictors of carbapenem-resistant <em>Klebsiella pneumoniae</em> infection. The role of artificial intelligence role in healthcare, particularly in ICUs for managing antibiotic-resistant infections, is a major development in medicine. This study emphasizes the potential of artificial intelligence to predict antimicrobial resistance and improve clinical decisions in resource-limited settings. The study was approved by <span><span>ClinicalTrials.gov</span><svg><path></path></svg></span> (trial registration number NCT05985057 on 02.08.2023).</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"195 ","pages":"Article 105751"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to antimicrobial resistance: Machine learning predictions for carbapenem-resistant Klebsiella in intensive care units\",\"authors\":\"V. Alparslan ,&nbsp;Ö. Güler ,&nbsp;B. İnner ,&nbsp;A. Düzgün ,&nbsp;N. Baykara ,&nbsp;A. Kuş\",\"doi\":\"10.1016/j.ijmedinf.2024.105751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study was conducted at Kocaeli University Hospital in Turkey and aimed to predict carbapenem-resistant <em>Klebsiella pneumoniae</em> infection in intensive care units using the Extreme Gradient Boosting (XGBoost) algorithm, a form of artificial intelligence. This was a retrospective case-control study involving 289 patients, including 159 carbapenem-resistant and 130 carbapenem-susceptible individuals as controls. The model’s predictive analysis combined a diverse range of demographic, clinical, and laboratory data, resulting in an average accuracy of 83.0%, precision of 83%, sensitivity of 88%, F1 score of 85%, and Matthews Correlation Coefficient of 0.66. Prolonged hospitalization and intensive care unit stay were significant predictors of carbapenem-resistant <em>Klebsiella pneumoniae</em> infection. The role of artificial intelligence role in healthcare, particularly in ICUs for managing antibiotic-resistant infections, is a major development in medicine. This study emphasizes the potential of artificial intelligence to predict antimicrobial resistance and improve clinical decisions in resource-limited settings. The study was approved by <span><span>ClinicalTrials.gov</span><svg><path></path></svg></span> (trial registration number NCT05985057 on 02.08.2023).</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"195 \",\"pages\":\"Article 105751\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505624004143\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624004143","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究是在土耳其Kocaeli大学医院进行的,旨在使用极端梯度增强(XGBoost)算法(一种人工智能形式)预测重症监护病房中碳青霉烯耐药性肺炎克雷伯菌感染。这是一项涉及289例患者的回顾性病例对照研究,其中包括159例碳青霉烯耐药个体和130例碳青霉烯敏感个体作为对照。该模型的预测分析结合了多种人口统计学、临床和实验室数据,平均准确率为83.0%,精密度为83%,灵敏度为88%,F1评分为85%,马修斯相关系数为0.66。延长住院时间和重症监护病房住院时间是耐碳青霉烯肺炎克雷伯菌感染的重要预测因素。人工智能在医疗保健中的作用,特别是在管理抗生素耐药感染的icu中的作用,是医学的一项重大发展。这项研究强调了人工智能在预测抗菌素耐药性和改善资源有限环境下的临床决策方面的潜力。该研究已获ClinicalTrials.gov批准(试验注册号NCT05985057,于2023年8月2日批准)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach to antimicrobial resistance: Machine learning predictions for carbapenem-resistant Klebsiella in intensive care units
This study was conducted at Kocaeli University Hospital in Turkey and aimed to predict carbapenem-resistant Klebsiella pneumoniae infection in intensive care units using the Extreme Gradient Boosting (XGBoost) algorithm, a form of artificial intelligence. This was a retrospective case-control study involving 289 patients, including 159 carbapenem-resistant and 130 carbapenem-susceptible individuals as controls. The model’s predictive analysis combined a diverse range of demographic, clinical, and laboratory data, resulting in an average accuracy of 83.0%, precision of 83%, sensitivity of 88%, F1 score of 85%, and Matthews Correlation Coefficient of 0.66. Prolonged hospitalization and intensive care unit stay were significant predictors of carbapenem-resistant Klebsiella pneumoniae infection. The role of artificial intelligence role in healthcare, particularly in ICUs for managing antibiotic-resistant infections, is a major development in medicine. This study emphasizes the potential of artificial intelligence to predict antimicrobial resistance and improve clinical decisions in resource-limited settings. The study was approved by ClinicalTrials.gov (trial registration number NCT05985057 on 02.08.2023).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review AI-driven triage in emergency departments: A review of benefits, challenges, and future directions Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches The fading structural prominence of explanations in clinical studies Utilization, challenges, and training needs of digital health technologies: Perspectives from healthcare professionals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1