{"title":"维持酸中毒介导的骨溶解的是碳酸氢钾,而不是碳酸氢钠。","authors":"Mikayla Moody, Nayara Zainadine, Trey Doktorski, Ruchir Trivedi, Tannin A Schmidt, Alix Deymier","doi":"10.1016/j.bone.2024.117369","DOIUrl":null,"url":null,"abstract":"<p><p>Treatments for metabolic acidosis are not well studied; however, one treatment that is commonly used is sodium bicarbonate administration. Sodium bicarbonate has been shown to help reduce symptoms of metabolic acidosis, but its benefits for bone health remain uncertain. Potassium bicarbonate has become a potential new treatment due to its reduction in bone resorption markers, unlike sodium bicarbonate. However, very few studies have looked at the connection between bone functionality and potassium bicarbonate supplementation, especially under the influence of an acidic challenge. To determine the impact of potassium bicarbonate and sodium bicarbonate on the mechanical, structural, compositional, and cellular properties of bone, acidotic mice were given either potassium bicarbonate or sodium bicarbonate for seven days. Blood gas analysis was conducted to evaluate their acidotic states throughout the study. After experimentation, the mice were euthanized, and their femurs excised for further analysis. Before bicarbonate supplementation, the acidotic mice given sodium bicarbonate were in acidosis while the acidotic mice given potassium bicarbonate were in acidemia. The bicarbonate treatment somewhat rescued the blood gas parameters in both acidosis groups, but acidemia and bone dissolution continued occurring in the acidotic mice given potassium bicarbonate, as made evident by the continuous elevation in blood sodium levels compared to the control. The acidosis group given potassium bicarbonate group also had worsened composition and structure, while the acidosis group given sodium bicarbonate had no changes in bone metrics. In this study, potassium bicarbonate was not effective at reducing bone dissolution under acidotic conditions.</p>","PeriodicalId":93913,"journal":{"name":"Bone","volume":" ","pages":"117369"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potassium bicarbonate, not sodium bicarbonate, maintains acidosis-mediated bone dissolution.\",\"authors\":\"Mikayla Moody, Nayara Zainadine, Trey Doktorski, Ruchir Trivedi, Tannin A Schmidt, Alix Deymier\",\"doi\":\"10.1016/j.bone.2024.117369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatments for metabolic acidosis are not well studied; however, one treatment that is commonly used is sodium bicarbonate administration. Sodium bicarbonate has been shown to help reduce symptoms of metabolic acidosis, but its benefits for bone health remain uncertain. Potassium bicarbonate has become a potential new treatment due to its reduction in bone resorption markers, unlike sodium bicarbonate. However, very few studies have looked at the connection between bone functionality and potassium bicarbonate supplementation, especially under the influence of an acidic challenge. To determine the impact of potassium bicarbonate and sodium bicarbonate on the mechanical, structural, compositional, and cellular properties of bone, acidotic mice were given either potassium bicarbonate or sodium bicarbonate for seven days. Blood gas analysis was conducted to evaluate their acidotic states throughout the study. After experimentation, the mice were euthanized, and their femurs excised for further analysis. Before bicarbonate supplementation, the acidotic mice given sodium bicarbonate were in acidosis while the acidotic mice given potassium bicarbonate were in acidemia. The bicarbonate treatment somewhat rescued the blood gas parameters in both acidosis groups, but acidemia and bone dissolution continued occurring in the acidotic mice given potassium bicarbonate, as made evident by the continuous elevation in blood sodium levels compared to the control. The acidosis group given potassium bicarbonate group also had worsened composition and structure, while the acidosis group given sodium bicarbonate had no changes in bone metrics. In this study, potassium bicarbonate was not effective at reducing bone dissolution under acidotic conditions.</p>\",\"PeriodicalId\":93913,\"journal\":{\"name\":\"Bone\",\"volume\":\" \",\"pages\":\"117369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bone.2024.117369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bone.2024.117369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Potassium bicarbonate, not sodium bicarbonate, maintains acidosis-mediated bone dissolution.
Treatments for metabolic acidosis are not well studied; however, one treatment that is commonly used is sodium bicarbonate administration. Sodium bicarbonate has been shown to help reduce symptoms of metabolic acidosis, but its benefits for bone health remain uncertain. Potassium bicarbonate has become a potential new treatment due to its reduction in bone resorption markers, unlike sodium bicarbonate. However, very few studies have looked at the connection between bone functionality and potassium bicarbonate supplementation, especially under the influence of an acidic challenge. To determine the impact of potassium bicarbonate and sodium bicarbonate on the mechanical, structural, compositional, and cellular properties of bone, acidotic mice were given either potassium bicarbonate or sodium bicarbonate for seven days. Blood gas analysis was conducted to evaluate their acidotic states throughout the study. After experimentation, the mice were euthanized, and their femurs excised for further analysis. Before bicarbonate supplementation, the acidotic mice given sodium bicarbonate were in acidosis while the acidotic mice given potassium bicarbonate were in acidemia. The bicarbonate treatment somewhat rescued the blood gas parameters in both acidosis groups, but acidemia and bone dissolution continued occurring in the acidotic mice given potassium bicarbonate, as made evident by the continuous elevation in blood sodium levels compared to the control. The acidosis group given potassium bicarbonate group also had worsened composition and structure, while the acidosis group given sodium bicarbonate had no changes in bone metrics. In this study, potassium bicarbonate was not effective at reducing bone dissolution under acidotic conditions.