不同生防菌处理对受枯萎病侵染的紫花苜蓿植株质量和根瘤土壤微生物的影响

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2024-12-16 DOI:10.1007/s11104-024-07119-2
Li-Li Zhang, Yan-Zhong Li
{"title":"不同生防菌处理对受枯萎病侵染的紫花苜蓿植株质量和根瘤土壤微生物的影响","authors":"Li-Li Zhang, Yan-Zhong Li","doi":"10.1007/s11104-024-07119-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Alfalfa (<i>Medicago sativa</i> L.) Verticillium wilt is a class A quarantined disease in China. In September 2022, symptoms of this disease were observed in five-year-old alfalfa plants in a biocontrol field. This study aimed to assess the effects of the Verticillium wilt pathogen on alfalfa rhizosphere soil and plants under different biocontrol bacteria treatments using <i>Bacillus amyloliquefaciens</i> LYZ0069 and <i>Streptomyces kanamyceticus</i> LYZ0133.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The pathogen responsible for Verticillium wilt in alfalfa was identified through molecular biology techniques and morphological examination. High-throughput sequencing was used to profile the bacterial and fungal communities in the rhizosphere soil of infected and healthy alfalfa plants under different biocontrol treatments. Culturable bacteria were isolated and evaluated for their inhibitory effects on the pathogen. Additionally, the physicochemical properties of rhizosphere soil and the nutrient content of plants were measured.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The pathogen was identified as <i>Verticillium alfalfae.</i> In total, 28 bacterial species and 11 fungal species were isolated from the rhizosphere soil. <i>Pseudomonas</i> species exhibited significantly higher isolation and inhibitory rates compared to other bacterial strains. Infection by <i>V. alfalfae</i> significantly affected the Pieloue evenness index of bacteria and the ammonium nitrogen content in the rhizosphere soil. The interactions between biocontrol bacteria and <i>V. alfalfae</i> significantly impacted alfalfa plant quality.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Alfalfa Verticillium wilt was detected in central of Gansu Province, significantly influencing plant nutrient content and relative abundance of <i>Pseudomonas</i> in alfalfa rhizosphere soil.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"12 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of different biocontrol bacteria treatments on the plant quality and rhizosphere soil microorganisms of Verticillium wilt-infested alfalfa plants\",\"authors\":\"Li-Li Zhang, Yan-Zhong Li\",\"doi\":\"10.1007/s11104-024-07119-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and aims</h3><p>Alfalfa (<i>Medicago sativa</i> L.) Verticillium wilt is a class A quarantined disease in China. In September 2022, symptoms of this disease were observed in five-year-old alfalfa plants in a biocontrol field. This study aimed to assess the effects of the Verticillium wilt pathogen on alfalfa rhizosphere soil and plants under different biocontrol bacteria treatments using <i>Bacillus amyloliquefaciens</i> LYZ0069 and <i>Streptomyces kanamyceticus</i> LYZ0133.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>The pathogen responsible for Verticillium wilt in alfalfa was identified through molecular biology techniques and morphological examination. High-throughput sequencing was used to profile the bacterial and fungal communities in the rhizosphere soil of infected and healthy alfalfa plants under different biocontrol treatments. Culturable bacteria were isolated and evaluated for their inhibitory effects on the pathogen. Additionally, the physicochemical properties of rhizosphere soil and the nutrient content of plants were measured.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The pathogen was identified as <i>Verticillium alfalfae.</i> In total, 28 bacterial species and 11 fungal species were isolated from the rhizosphere soil. <i>Pseudomonas</i> species exhibited significantly higher isolation and inhibitory rates compared to other bacterial strains. Infection by <i>V. alfalfae</i> significantly affected the Pieloue evenness index of bacteria and the ammonium nitrogen content in the rhizosphere soil. The interactions between biocontrol bacteria and <i>V. alfalfae</i> significantly impacted alfalfa plant quality.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Alfalfa Verticillium wilt was detected in central of Gansu Province, significantly influencing plant nutrient content and relative abundance of <i>Pseudomonas</i> in alfalfa rhizosphere soil.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07119-2\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07119-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的紫花苜蓿(Medicago sativa L.)黄萎病是中国检疫的一类传染病。2022年9月,在一个生物防治田的5年生苜蓿植株中观察到该病的症状。以解淀粉芽孢杆菌LYZ0069和卡amycestreptomyces LYZ0133为防菌剂,研究了不同防菌处理下黄萎病病菌对苜蓿根际土壤和植株的影响。方法采用分子生物学技术和形态学方法对苜蓿黄萎病病原进行鉴定。采用高通量测序技术对不同生物防治处理下健康和感染苜蓿根际土壤细菌和真菌群落进行了分析。分离出可培养细菌,并评价其对病原菌的抑制作用。此外,还测定了根际土壤的理化性质和植物的养分含量。结果病原菌鉴定为紫花黄萎病菌。从根际土壤中分离到28种细菌和11种真菌。与其他菌株相比,假单胞菌的分离率和抑制率显著提高。紫花苜蓿侵染显著影响了根际土壤细菌Pieloue均匀度指数和铵态氮含量。生防菌与紫花苜蓿的相互作用对苜蓿植株品质有显著影响。结论甘中地区存在紫花苜蓿黄萎病,对紫花苜蓿根际土壤养分含量和假单胞菌相对丰度有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of different biocontrol bacteria treatments on the plant quality and rhizosphere soil microorganisms of Verticillium wilt-infested alfalfa plants

Background and aims

Alfalfa (Medicago sativa L.) Verticillium wilt is a class A quarantined disease in China. In September 2022, symptoms of this disease were observed in five-year-old alfalfa plants in a biocontrol field. This study aimed to assess the effects of the Verticillium wilt pathogen on alfalfa rhizosphere soil and plants under different biocontrol bacteria treatments using Bacillus amyloliquefaciens LYZ0069 and Streptomyces kanamyceticus LYZ0133.

Methods

The pathogen responsible for Verticillium wilt in alfalfa was identified through molecular biology techniques and morphological examination. High-throughput sequencing was used to profile the bacterial and fungal communities in the rhizosphere soil of infected and healthy alfalfa plants under different biocontrol treatments. Culturable bacteria were isolated and evaluated for their inhibitory effects on the pathogen. Additionally, the physicochemical properties of rhizosphere soil and the nutrient content of plants were measured.

Results

The pathogen was identified as Verticillium alfalfae. In total, 28 bacterial species and 11 fungal species were isolated from the rhizosphere soil. Pseudomonas species exhibited significantly higher isolation and inhibitory rates compared to other bacterial strains. Infection by V. alfalfae significantly affected the Pieloue evenness index of bacteria and the ammonium nitrogen content in the rhizosphere soil. The interactions between biocontrol bacteria and V. alfalfae significantly impacted alfalfa plant quality.

Conclusion

Alfalfa Verticillium wilt was detected in central of Gansu Province, significantly influencing plant nutrient content and relative abundance of Pseudomonas in alfalfa rhizosphere soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Adaptation strategies of three legumes to soil phosphorus availability in steppes of Inner Mongolia Linkage between plant nitrogen preference and rhizosphere effects on soil nitrogen transformation reveals a plant resource adaptive strategies in nitrogen-limited soils Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil Flooding-driven gravel encroachment reshapes plant community structure and reduces community stability in an arid alluvial fan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1