最短向量问题的格罗弗神谕及其在经典-量子混合求解器中的应用

Miloš Prokop;Petros Wallden;David Joseph
{"title":"最短向量问题的格罗弗神谕及其在经典-量子混合求解器中的应用","authors":"Miloš Prokop;Petros Wallden;David Joseph","doi":"10.1109/TQE.2024.3501683","DOIUrl":null,"url":null,"abstract":"Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers. Many major postquantum secure cryptosystems base their security on the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or hybrid classical–quantum algorithms for the SVP is necessary to select cryptosystem parameters that offer a sufficient level of security. Grover's search quantum algorithm provides a generic quadratic speedup, given access to an oracle implementing some function, which describes when a solution is found. In this article, we provide concrete implementation of such an oracle for the SVP. We define the circuit and evaluate costs in terms of the number of qubits, the number of gates, depth, and T-quantum cost. We then analyze how to combine Grover's quantum search for small SVP instances with state-of-the-art classical solvers that use well-known algorithms, such as the block Korkine Zolotorev (Schnorr and Euchner, 1994), where the former is used as a subroutine. This could enable solving larger instances of SVP with higher probability than classical state-of-the-art records, but still very far from posing any threat to cryptosystems being considered for standardization. Depending on the technology available, there is a spectrum of tradeoffs in creating this combination.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756628","citationCount":"0","resultStr":"{\"title\":\"Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers\",\"authors\":\"Miloš Prokop;Petros Wallden;David Joseph\",\"doi\":\"10.1109/TQE.2024.3501683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers. Many major postquantum secure cryptosystems base their security on the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or hybrid classical–quantum algorithms for the SVP is necessary to select cryptosystem parameters that offer a sufficient level of security. Grover's search quantum algorithm provides a generic quadratic speedup, given access to an oracle implementing some function, which describes when a solution is found. In this article, we provide concrete implementation of such an oracle for the SVP. We define the circuit and evaluate costs in terms of the number of qubits, the number of gates, depth, and T-quantum cost. We then analyze how to combine Grover's quantum search for small SVP instances with state-of-the-art classical solvers that use well-known algorithms, such as the block Korkine Zolotorev (Schnorr and Euchner, 1994), where the former is used as a subroutine. This could enable solving larger instances of SVP with higher probability than classical state-of-the-art records, but still very far from posing any threat to cryptosystems being considered for standardization. Depending on the technology available, there is a spectrum of tradeoffs in creating this combination.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756628\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756628/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10756628/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在晶格中找到最短的向量是一个被认为对经典计算机和量子计算机都很困难的问题。许多主要的后量子安全密码系统的安全性基于最短向量问题(SVP)的硬度(Moody, 2023)。为SVP找到最佳的经典、量子或混合经典-量子算法是选择提供足够安全级别的密码系统参数所必需的。Grover的搜索量子算法提供了一个通用的二次加速,给定访问实现某个函数的oracle,该函数描述何时找到解决方案。在本文中,我们为SVP提供了这样一个oracle的具体实现。我们定义电路并根据量子比特的数量、门的数量、深度和t -量子成本来评估成本。然后,我们分析如何将Grover的小型SVP实例的量子搜索与使用知名算法的最先进的经典求解器相结合,例如块Korkine Zolotorev (Schnorr和Euchner, 1994),其中前者用作子程序。这可以使解决更大的SVP实例的概率比传统的最先进的记录高,但仍然远远不会对正在考虑标准化的密码系统构成任何威胁。根据可用技术的不同,在创建这种组合时需要进行一系列权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers. Many major postquantum secure cryptosystems base their security on the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or hybrid classical–quantum algorithms for the SVP is necessary to select cryptosystem parameters that offer a sufficient level of security. Grover's search quantum algorithm provides a generic quadratic speedup, given access to an oracle implementing some function, which describes when a solution is found. In this article, we provide concrete implementation of such an oracle for the SVP. We define the circuit and evaluate costs in terms of the number of qubits, the number of gates, depth, and T-quantum cost. We then analyze how to combine Grover's quantum search for small SVP instances with state-of-the-art classical solvers that use well-known algorithms, such as the block Korkine Zolotorev (Schnorr and Euchner, 1994), where the former is used as a subroutine. This could enable solving larger instances of SVP with higher probability than classical state-of-the-art records, but still very far from posing any threat to cryptosystems being considered for standardization. Depending on the technology available, there is a spectrum of tradeoffs in creating this combination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
C3-VQA: Cryogenic Counter-Based Coprocessor for Variational Quantum Algorithms RSFQ All-Digital Programmable Multitone Generator for Quantum Applications IEEE Transactions on Quantum Engineering Publication Information Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures Dissipative Variational Quantum Algorithms for Gibbs State Preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1