一种用于光图案化、温度和湿度传感的含螺吡喃的智能纤维素材料†。

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-10-30 DOI:10.1039/D4QM00773E
Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo
{"title":"一种用于光图案化、温度和湿度传感的含螺吡喃的智能纤维素材料†。","authors":"Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo","doi":"10.1039/D4QM00773E","DOIUrl":null,"url":null,"abstract":"<p >Based on their stimuli-responsiveness, smart materials are able to undergo controllable physicochemical changes. As compared to the responsiveness to one specific stimulus, multiple stimuli-responsiveness would make smart materials adaptable to diverse environments, which is highly desired in the design of smart materials but appreciably more difficult to realize. Herein, an ammonium surfactant (SPA) based on spiropyran is designed for complexing with carboxymethylcellulose through an electrostatic route, affording a soft cellulose material (CMC–SPA) in solvent-free conditions. Thanks to the molecular design of SPA and the anisotropic arrangement of cellulose on SPA molecules, CMC–SPA exhibits triple stimuli-responsiveness by responding to light, heat and humidity. With good thermodynamic stabilities of different color states, CMC–SPA could well record optical information by changing colors under UV and visible irradiations. More interestingly, linear relationships between UV-visible absorption and temperature/humidity are established, endowing CMC–SPA with the functions of recording ceiling temperatures in inaccessible scenarios and indicating real-time environmental humidity. This study provides a design strategy for fabricating multiple stimuli-responsive materials, affording a new route for gaining smart biomaterials from biomacromolecules.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 100-108"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A smart spiropyran-containing cellulose material for photopatterning, temperature and humidity sensing†\",\"authors\":\"Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo\",\"doi\":\"10.1039/D4QM00773E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Based on their stimuli-responsiveness, smart materials are able to undergo controllable physicochemical changes. As compared to the responsiveness to one specific stimulus, multiple stimuli-responsiveness would make smart materials adaptable to diverse environments, which is highly desired in the design of smart materials but appreciably more difficult to realize. Herein, an ammonium surfactant (SPA) based on spiropyran is designed for complexing with carboxymethylcellulose through an electrostatic route, affording a soft cellulose material (CMC–SPA) in solvent-free conditions. Thanks to the molecular design of SPA and the anisotropic arrangement of cellulose on SPA molecules, CMC–SPA exhibits triple stimuli-responsiveness by responding to light, heat and humidity. With good thermodynamic stabilities of different color states, CMC–SPA could well record optical information by changing colors under UV and visible irradiations. More interestingly, linear relationships between UV-visible absorption and temperature/humidity are established, endowing CMC–SPA with the functions of recording ceiling temperatures in inaccessible scenarios and indicating real-time environmental humidity. This study provides a design strategy for fabricating multiple stimuli-responsive materials, affording a new route for gaining smart biomaterials from biomacromolecules.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 1\",\"pages\":\" 100-108\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00773e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00773e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于它们的刺激响应性,智能材料能够经历可控的物理化学变化。与对一个特定刺激的响应性相比,多刺激响应性将使智能材料适应不同的环境,这是智能材料设计中高度期望的,但显然更难实现。本文设计了一种基于螺吡喃的铵态表面活性剂(SPA),通过静电途径与羧甲基纤维素络合,在无溶剂条件下获得软质纤维素材料(CMC-SPA)。由于SPA的分子设计和纤维素在SPA分子上的各向异性排列,CMC-SPA表现出对光、热、湿三重刺激的响应性。CMC-SPA具有不同色态的良好热力学稳定性,在紫外和可见光照射下可以很好地记录光信息。更有趣的是,CMC-SPA的uv -可见光吸收与温度/湿度之间建立了线性关系,赋予了CMC-SPA在难以进入的场景中记录天花板温度和实时显示环境湿度的功能。本研究为制备多种刺激响应材料提供了一种设计策略,为从生物大分子中获得智能生物材料提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A smart spiropyran-containing cellulose material for photopatterning, temperature and humidity sensing†

Based on their stimuli-responsiveness, smart materials are able to undergo controllable physicochemical changes. As compared to the responsiveness to one specific stimulus, multiple stimuli-responsiveness would make smart materials adaptable to diverse environments, which is highly desired in the design of smart materials but appreciably more difficult to realize. Herein, an ammonium surfactant (SPA) based on spiropyran is designed for complexing with carboxymethylcellulose through an electrostatic route, affording a soft cellulose material (CMC–SPA) in solvent-free conditions. Thanks to the molecular design of SPA and the anisotropic arrangement of cellulose on SPA molecules, CMC–SPA exhibits triple stimuli-responsiveness by responding to light, heat and humidity. With good thermodynamic stabilities of different color states, CMC–SPA could well record optical information by changing colors under UV and visible irradiations. More interestingly, linear relationships between UV-visible absorption and temperature/humidity are established, endowing CMC–SPA with the functions of recording ceiling temperatures in inaccessible scenarios and indicating real-time environmental humidity. This study provides a design strategy for fabricating multiple stimuli-responsive materials, affording a new route for gaining smart biomaterials from biomacromolecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover Recent advances in tailored chitosan-based hydrogels for bone regeneration and repair Recent advances in nanozyme-based materials for environmental pollutant detection and remediation Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1