利用物理引导的人工神经网络优化三维纳米材料打印的工艺参数,以提高均匀性、质量和尺寸精度

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-12-16 DOI:10.1186/s11671-024-04155-w
Anita Ghandehari, Jorge A. Tavares-Negrete, Jerome Rajendran, Qian Yi, Rahim Esfandyarpour
{"title":"利用物理引导的人工神经网络优化三维纳米材料打印的工艺参数,以提高均匀性、质量和尺寸精度","authors":"Anita Ghandehari,&nbsp;Jorge A. Tavares-Negrete,&nbsp;Jerome Rajendran,&nbsp;Qian Yi,&nbsp;Rahim Esfandyarpour","doi":"10.1186/s11671-024-04155-w","DOIUrl":null,"url":null,"abstract":"<div><p>Pneumatic 3D-nanomaterial printing, a prominent additive manufacturing technique, excels in processing advanced materials like MXene, crucial for applications in nano-energy, flexible electronics, and sensors. A key challenge in this domain is optimizing process parameters—applied pressure, ink concentration, nozzle diameter, and printing velocity—to achieve uniform, high-quality prints with the desired filament diameter. Traditional trial-and-error methods often result in significant material waste and time consumption. To address this, our study introduces a comprehensive pipeline that initially assesses whether the selected process parameters yield uniform, high-quality MXene prints. Subsequently, it employs a Physics-Guided Artificial Neural Network (PGANN) to predict the filament diameter based on these parameters, integrating fundamental physical principles of the printing process with experimental data. Our findings demonstrate that using an XGBoost classifier, we can classify printed filament quality with an accuracy of 90.44%. Furthermore, the PGANN model shows exceptional performance in predicting the filament diameter, achieving a Pearson Correlation Coefficient (PCC) of 0.9488, a Mean Squared Error (MSE) of 0.000092 mm<sup>2</sup>, and a Mean Absolute Error (MAE) of 0.00711 mm. This pipeline significantly streamlines the process for researchers, facilitating the selection of optimal printing parameters to consistently achieve high-quality prints and accurately produce the desired filament diameter tailored to specific applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04155-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization of process parameters in 3D-nanomaterials printing for enhanced uniformity, quality, and dimensional precision using physics-guided artificial neural network\",\"authors\":\"Anita Ghandehari,&nbsp;Jorge A. Tavares-Negrete,&nbsp;Jerome Rajendran,&nbsp;Qian Yi,&nbsp;Rahim Esfandyarpour\",\"doi\":\"10.1186/s11671-024-04155-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pneumatic 3D-nanomaterial printing, a prominent additive manufacturing technique, excels in processing advanced materials like MXene, crucial for applications in nano-energy, flexible electronics, and sensors. A key challenge in this domain is optimizing process parameters—applied pressure, ink concentration, nozzle diameter, and printing velocity—to achieve uniform, high-quality prints with the desired filament diameter. Traditional trial-and-error methods often result in significant material waste and time consumption. To address this, our study introduces a comprehensive pipeline that initially assesses whether the selected process parameters yield uniform, high-quality MXene prints. Subsequently, it employs a Physics-Guided Artificial Neural Network (PGANN) to predict the filament diameter based on these parameters, integrating fundamental physical principles of the printing process with experimental data. Our findings demonstrate that using an XGBoost classifier, we can classify printed filament quality with an accuracy of 90.44%. Furthermore, the PGANN model shows exceptional performance in predicting the filament diameter, achieving a Pearson Correlation Coefficient (PCC) of 0.9488, a Mean Squared Error (MSE) of 0.000092 mm<sup>2</sup>, and a Mean Absolute Error (MAE) of 0.00711 mm. This pipeline significantly streamlines the process for researchers, facilitating the selection of optimal printing parameters to consistently achieve high-quality prints and accurately produce the desired filament diameter tailored to specific applications.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-024-04155-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04155-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04155-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

气动三维纳米材料打印是一种突出的增材制造技术,在加工 MXene 等先进材料方面表现出色,这对纳米能源、柔性电子和传感器等应用至关重要。该领域的一个关键挑战是优化工艺参数--应用压力、油墨浓度、喷嘴直径和打印速度--以实现均匀、高质量的打印,并达到所需的长丝直径。传统的试错法往往会造成大量的材料浪费和时间消耗。为了解决这个问题,我们的研究引入了一个综合管道,首先评估所选工艺参数是否能产生均匀、高质量的 MXene 印刷品。随后,它采用物理引导的人工神经网络 (PGANN) 根据这些参数预测长丝直径,将打印过程的基本物理原理与实验数据相结合。我们的研究结果表明,使用 XGBoost 分类器,我们能以 90.44% 的准确率对印刷长丝质量进行分类。此外,PGANN 模型在预测长丝直径方面表现优异,皮尔逊相关系数 (PCC) 为 0.9488,平均平方误差 (MSE) 为 0.000092 mm2,平均绝对误差 (MAE) 为 0.00711 mm。该流水线大大简化了研究人员的工作流程,便于选择最佳打印参数,从而始终如一地实现高质量打印,并根据特定应用准确生产出所需的长丝直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of process parameters in 3D-nanomaterials printing for enhanced uniformity, quality, and dimensional precision using physics-guided artificial neural network

Pneumatic 3D-nanomaterial printing, a prominent additive manufacturing technique, excels in processing advanced materials like MXene, crucial for applications in nano-energy, flexible electronics, and sensors. A key challenge in this domain is optimizing process parameters—applied pressure, ink concentration, nozzle diameter, and printing velocity—to achieve uniform, high-quality prints with the desired filament diameter. Traditional trial-and-error methods often result in significant material waste and time consumption. To address this, our study introduces a comprehensive pipeline that initially assesses whether the selected process parameters yield uniform, high-quality MXene prints. Subsequently, it employs a Physics-Guided Artificial Neural Network (PGANN) to predict the filament diameter based on these parameters, integrating fundamental physical principles of the printing process with experimental data. Our findings demonstrate that using an XGBoost classifier, we can classify printed filament quality with an accuracy of 90.44%. Furthermore, the PGANN model shows exceptional performance in predicting the filament diameter, achieving a Pearson Correlation Coefficient (PCC) of 0.9488, a Mean Squared Error (MSE) of 0.000092 mm2, and a Mean Absolute Error (MAE) of 0.00711 mm. This pipeline significantly streamlines the process for researchers, facilitating the selection of optimal printing parameters to consistently achieve high-quality prints and accurately produce the desired filament diameter tailored to specific applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+) Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1