Florencia P Coronel, Diana E Gras, M Victoria Canal, Facundo Roldan, Elina Welchen, Daniel H Gonzalez
{"title":"细胞色素 c 水平通过 SnRK1 途径活性的变化将线粒体功能与植物生长和胁迫响应联系起来。","authors":"Florencia P Coronel, Diana E Gras, M Victoria Canal, Facundo Roldan, Elina Welchen, Daniel H Gonzalez","doi":"10.1111/tpj.17215","DOIUrl":null,"url":null,"abstract":"<p><p>Energy is required for growth as well as for multiple cellular processes. During evolution, plants developed regulatory mechanisms to adapt energy consumption to metabolic reserves and cellular needs. Reduced growth is often observed under stress, leading to a growth-stress trade-off that governs plant performance under different conditions. In this work, we report that plants with reduced levels of the mitochondrial respiratory chain component cytochrome c (CYTc), required for electron transport coupled to oxidative phosphorylation and ATP production, show impaired growth and increased global expression of stress-responsive genes, similar to those observed after inhibiting the respiratory chain or the mitochondrial ATP synthase. CYTc-deficient plants also show activation of the SnRK1 pathway, which regulates growth, metabolism, and stress responses under carbon starvation conditions, even though their carbohydrate levels are not significantly different from wild-type. Notably, loss-of-function of the gene encoding the SnRK1α1 subunit restores the growth of CYTc-deficient plants, as well as autophagy, free amino acid and TOR pathway activity levels, which are affected in these plants. Moreover, increasing CYTc levels decreases SnRK1 pathway activation, reflected in reduced SnRK1α1 phosphorylation, with no changes in total SnRK1α1 protein levels. Under stress imposed by mannitol, the growth of CYTc-deficient plants is relatively less affected than that of wild-type plants, which is also related to the activation of the SnRK1 pathway. Our results indicate that SnRK1 function is affected by CYTc levels, thus providing a molecular link between mitochondrial function and plant growth under normal and stress conditions.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytochrome c levels link mitochondrial function to plant growth and stress responses through changes in SnRK1 pathway activity.\",\"authors\":\"Florencia P Coronel, Diana E Gras, M Victoria Canal, Facundo Roldan, Elina Welchen, Daniel H Gonzalez\",\"doi\":\"10.1111/tpj.17215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy is required for growth as well as for multiple cellular processes. During evolution, plants developed regulatory mechanisms to adapt energy consumption to metabolic reserves and cellular needs. Reduced growth is often observed under stress, leading to a growth-stress trade-off that governs plant performance under different conditions. In this work, we report that plants with reduced levels of the mitochondrial respiratory chain component cytochrome c (CYTc), required for electron transport coupled to oxidative phosphorylation and ATP production, show impaired growth and increased global expression of stress-responsive genes, similar to those observed after inhibiting the respiratory chain or the mitochondrial ATP synthase. CYTc-deficient plants also show activation of the SnRK1 pathway, which regulates growth, metabolism, and stress responses under carbon starvation conditions, even though their carbohydrate levels are not significantly different from wild-type. Notably, loss-of-function of the gene encoding the SnRK1α1 subunit restores the growth of CYTc-deficient plants, as well as autophagy, free amino acid and TOR pathway activity levels, which are affected in these plants. Moreover, increasing CYTc levels decreases SnRK1 pathway activation, reflected in reduced SnRK1α1 phosphorylation, with no changes in total SnRK1α1 protein levels. Under stress imposed by mannitol, the growth of CYTc-deficient plants is relatively less affected than that of wild-type plants, which is also related to the activation of the SnRK1 pathway. Our results indicate that SnRK1 function is affected by CYTc levels, thus providing a molecular link between mitochondrial function and plant growth under normal and stress conditions.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17215\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17215","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
生长以及多种细胞过程都需要能量。在进化过程中,植物发展出了使能量消耗适应代谢储备和细胞需求的调节机制。在胁迫条件下经常会观察到生长减弱的现象,这导致了生长与胁迫之间的权衡,从而影响了植物在不同条件下的表现。在这项工作中,我们报告了线粒体呼吸链成分细胞色素 c(CYTc)水平降低的植物(电子传递与氧化磷酸化和 ATP 生产耦合所需的细胞色素 c)表现出生长受阻和应激反应基因的全局表达增加,这与抑制呼吸链或线粒体 ATP 合成酶后观察到的情况类似。CYTc 缺失植株还表现出 SnRK1 通路的激活,该通路在碳饥饿条件下调节生长、新陈代谢和胁迫反应,尽管它们的碳水化合物水平与野生型没有显著差异。值得注意的是,编码 SnRK1α1 亚基的基因功能缺失可恢复 CYTc 缺失植株的生长,以及自噬、游离氨基酸和 TOR 途径活性水平,这些在这些植株中都受到了影响。此外,增加 CYTc 水平会降低 SnRK1 通路的激活,这反映在 SnRK1α1 磷酸化的减少上,而 SnRK1α1 蛋白的总水平没有变化。在甘露醇胁迫下,CYTc缺陷植株的生长受到的影响比野生型植株相对较小,这也与SnRK1通路的激活有关。我们的研究结果表明,SnRK1 的功能受 CYTc 水平的影响,从而提供了线粒体功能与正常和胁迫条件下植物生长之间的分子联系。
Cytochrome c levels link mitochondrial function to plant growth and stress responses through changes in SnRK1 pathway activity.
Energy is required for growth as well as for multiple cellular processes. During evolution, plants developed regulatory mechanisms to adapt energy consumption to metabolic reserves and cellular needs. Reduced growth is often observed under stress, leading to a growth-stress trade-off that governs plant performance under different conditions. In this work, we report that plants with reduced levels of the mitochondrial respiratory chain component cytochrome c (CYTc), required for electron transport coupled to oxidative phosphorylation and ATP production, show impaired growth and increased global expression of stress-responsive genes, similar to those observed after inhibiting the respiratory chain or the mitochondrial ATP synthase. CYTc-deficient plants also show activation of the SnRK1 pathway, which regulates growth, metabolism, and stress responses under carbon starvation conditions, even though their carbohydrate levels are not significantly different from wild-type. Notably, loss-of-function of the gene encoding the SnRK1α1 subunit restores the growth of CYTc-deficient plants, as well as autophagy, free amino acid and TOR pathway activity levels, which are affected in these plants. Moreover, increasing CYTc levels decreases SnRK1 pathway activation, reflected in reduced SnRK1α1 phosphorylation, with no changes in total SnRK1α1 protein levels. Under stress imposed by mannitol, the growth of CYTc-deficient plants is relatively less affected than that of wild-type plants, which is also related to the activation of the SnRK1 pathway. Our results indicate that SnRK1 function is affected by CYTc levels, thus providing a molecular link between mitochondrial function and plant growth under normal and stress conditions.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.