LaVauria D Brown, Adel S Girgis, Shruti Patel, Nermin Samir, Mona F Said, Anurag T K Baidya, Rajnish Kumar, Jade Moore, Anshuman Khadanga, Rajeev Sakhuja, Siva S Panda
{"title":"具有镇痛和抗炎特性的新型靛红共轭物:设计、合成和生物学评价。","authors":"LaVauria D Brown, Adel S Girgis, Shruti Patel, Nermin Samir, Mona F Said, Anurag T K Baidya, Rajnish Kumar, Jade Moore, Anshuman Khadanga, Rajeev Sakhuja, Siva S Panda","doi":"10.1080/17568919.2024.2437981","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to develop novel molecular hybrid conjugates integrating isatin, rhodanine, and phthalimide pharmacophores to create effective analgesic and anti-inflammatory agents with improved safety profiles over existing treatments.</p><p><strong>Materials & methods: </strong>A series of hybrid conjugates (<b>4a - l</b>) were synthesized and evaluated through in vitro and in vivo biological assays. The most promising compound, <b>4c</b>, underwent extensive pharmacological and toxicological evaluations. Molecular docking, molecular dynamics simulations, and 2D-QSAR studies were performed to elucidate the mechanism of action and validate the experimental findings.</p><p><strong>Results: </strong>Compound <b>4c</b> exhibited potent analgesic and anti-inflammatory activity, effectively inhibiting COX-2 and pro-inflammatory cytokines (IL-6 and TNF-α). Its superior selectivity index (SI) was 1.11 compared to 0.67 for indomethacin. It demonstrated an ulcer index of 2.9 versus 10.23 for indomethacin, indicating reduced gastrointestinal toxicity. Molecular docking simulations revealed a strong binding affinity with COX-2 (-9.832 kcal/mol), and molecular dynamics confirmed the stability of the COX-2 complex.</p><p><strong>Conclusions: </strong>Compound <b>4c</b> emerged as a promising lead candidate for developing safer and more effective anti-inflammatory and analgesic agents. Its robust efficacy, safety profile, and computational validation highlight its potential for further optimization in therapeutic applications.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-15"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel isatin conjugates endowed with analgesic and anti-inflammatory properties: design, synthesis and biological evaluation.\",\"authors\":\"LaVauria D Brown, Adel S Girgis, Shruti Patel, Nermin Samir, Mona F Said, Anurag T K Baidya, Rajnish Kumar, Jade Moore, Anshuman Khadanga, Rajeev Sakhuja, Siva S Panda\",\"doi\":\"10.1080/17568919.2024.2437981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aimed to develop novel molecular hybrid conjugates integrating isatin, rhodanine, and phthalimide pharmacophores to create effective analgesic and anti-inflammatory agents with improved safety profiles over existing treatments.</p><p><strong>Materials & methods: </strong>A series of hybrid conjugates (<b>4a - l</b>) were synthesized and evaluated through in vitro and in vivo biological assays. The most promising compound, <b>4c</b>, underwent extensive pharmacological and toxicological evaluations. Molecular docking, molecular dynamics simulations, and 2D-QSAR studies were performed to elucidate the mechanism of action and validate the experimental findings.</p><p><strong>Results: </strong>Compound <b>4c</b> exhibited potent analgesic and anti-inflammatory activity, effectively inhibiting COX-2 and pro-inflammatory cytokines (IL-6 and TNF-α). Its superior selectivity index (SI) was 1.11 compared to 0.67 for indomethacin. It demonstrated an ulcer index of 2.9 versus 10.23 for indomethacin, indicating reduced gastrointestinal toxicity. Molecular docking simulations revealed a strong binding affinity with COX-2 (-9.832 kcal/mol), and molecular dynamics confirmed the stability of the COX-2 complex.</p><p><strong>Conclusions: </strong>Compound <b>4c</b> emerged as a promising lead candidate for developing safer and more effective anti-inflammatory and analgesic agents. Its robust efficacy, safety profile, and computational validation highlight its potential for further optimization in therapeutic applications.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2437981\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2437981","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Novel isatin conjugates endowed with analgesic and anti-inflammatory properties: design, synthesis and biological evaluation.
Aims: This study aimed to develop novel molecular hybrid conjugates integrating isatin, rhodanine, and phthalimide pharmacophores to create effective analgesic and anti-inflammatory agents with improved safety profiles over existing treatments.
Materials & methods: A series of hybrid conjugates (4a - l) were synthesized and evaluated through in vitro and in vivo biological assays. The most promising compound, 4c, underwent extensive pharmacological and toxicological evaluations. Molecular docking, molecular dynamics simulations, and 2D-QSAR studies were performed to elucidate the mechanism of action and validate the experimental findings.
Results: Compound 4c exhibited potent analgesic and anti-inflammatory activity, effectively inhibiting COX-2 and pro-inflammatory cytokines (IL-6 and TNF-α). Its superior selectivity index (SI) was 1.11 compared to 0.67 for indomethacin. It demonstrated an ulcer index of 2.9 versus 10.23 for indomethacin, indicating reduced gastrointestinal toxicity. Molecular docking simulations revealed a strong binding affinity with COX-2 (-9.832 kcal/mol), and molecular dynamics confirmed the stability of the COX-2 complex.
Conclusions: Compound 4c emerged as a promising lead candidate for developing safer and more effective anti-inflammatory and analgesic agents. Its robust efficacy, safety profile, and computational validation highlight its potential for further optimization in therapeutic applications.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.