{"title":"妊娠导致母体循环中性粒细胞的代谢重构","authors":"Guillermina Calo, Fátima Merech, Florencia Sabbione, Vanesa Hauk, Brenda Lara, Luciana Doga, Luciana D'eramo, Aldo Squassi, Rosanna Ramhorst, Analía Trevani, Daiana Vota, Claudia Pérez Leirós","doi":"10.1002/jcp.31502","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Immunometabolism is an emerging growing field that focuses on the role of cellular metabolism in the regulation of immune cell function and fate. Thus, proliferation, differentiation, activation, and function of immune cell populations are modulated by reprogramming their fueling and metabolic pathways. Pregnancy entails a fine immune and metabolic regulation of the maternal−fetal interaction to assist the energetic demands of the fetus where trophoblast cells have a central role. Maternal neutrophil functional shaping by trophoblast cells has been proposed though their metabolic conditioning during pregnancy has not been studied yet. Here, we explored the effects of trophoblast-derived factors on the metabolic rewiring of neutrophils from nonpregnant women and its impact on central functions like reactive oxygen species (ROS) production, neutrophil extracellular trap (NET) release, and migration. In parallel, the immunometabolic status and function of neutrophils isolated from pregnant women (16−20 weeks) was compared with nonpregnant age-matched control samples. Trophoblast-derived factors induced glucose uptake and lipid droplet accumulation without activating ROS production or NET release. Conditioned media from trophoblast cells also inhibited PMA-induced NETosis partly by impairing glucose uptake in neutrophils. In turn, neutrophils from pregnant women had increased basal ROS production, lipid accumulation, and glucose uptake compared to neutrophils from nonpregnant women, accompanied by a higher release of PMA-induced NETs. Interestingly, PMA-induced NETs was blocked by a fatty acid oxidation inhibitor in neutrophils from pregnant women indicating the contribution of fatty acid metabolism to neutrophil activity during pregnancy. Results are consistent with immunometabolic mechanisms underlying the functional shaping of neutrophils during pregnancy and point out the contribution of trophoblast-derived factors to their metabolic profiling. These findings provide novel immunometabolic clues to understand immune homeostasis maintenance during pregnancy and raise the clinical potential of monitoring neutrophil metabolism during normal and complicated pregnancies.</p>\n </div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pregnancy Entails a Metabolic Rewiring of Maternal Circulating Neutrophils\",\"authors\":\"Guillermina Calo, Fátima Merech, Florencia Sabbione, Vanesa Hauk, Brenda Lara, Luciana Doga, Luciana D'eramo, Aldo Squassi, Rosanna Ramhorst, Analía Trevani, Daiana Vota, Claudia Pérez Leirós\",\"doi\":\"10.1002/jcp.31502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Immunometabolism is an emerging growing field that focuses on the role of cellular metabolism in the regulation of immune cell function and fate. Thus, proliferation, differentiation, activation, and function of immune cell populations are modulated by reprogramming their fueling and metabolic pathways. Pregnancy entails a fine immune and metabolic regulation of the maternal−fetal interaction to assist the energetic demands of the fetus where trophoblast cells have a central role. Maternal neutrophil functional shaping by trophoblast cells has been proposed though their metabolic conditioning during pregnancy has not been studied yet. Here, we explored the effects of trophoblast-derived factors on the metabolic rewiring of neutrophils from nonpregnant women and its impact on central functions like reactive oxygen species (ROS) production, neutrophil extracellular trap (NET) release, and migration. In parallel, the immunometabolic status and function of neutrophils isolated from pregnant women (16−20 weeks) was compared with nonpregnant age-matched control samples. Trophoblast-derived factors induced glucose uptake and lipid droplet accumulation without activating ROS production or NET release. Conditioned media from trophoblast cells also inhibited PMA-induced NETosis partly by impairing glucose uptake in neutrophils. In turn, neutrophils from pregnant women had increased basal ROS production, lipid accumulation, and glucose uptake compared to neutrophils from nonpregnant women, accompanied by a higher release of PMA-induced NETs. Interestingly, PMA-induced NETs was blocked by a fatty acid oxidation inhibitor in neutrophils from pregnant women indicating the contribution of fatty acid metabolism to neutrophil activity during pregnancy. Results are consistent with immunometabolic mechanisms underlying the functional shaping of neutrophils during pregnancy and point out the contribution of trophoblast-derived factors to their metabolic profiling. These findings provide novel immunometabolic clues to understand immune homeostasis maintenance during pregnancy and raise the clinical potential of monitoring neutrophil metabolism during normal and complicated pregnancies.</p>\\n </div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Pregnancy Entails a Metabolic Rewiring of Maternal Circulating Neutrophils
Immunometabolism is an emerging growing field that focuses on the role of cellular metabolism in the regulation of immune cell function and fate. Thus, proliferation, differentiation, activation, and function of immune cell populations are modulated by reprogramming their fueling and metabolic pathways. Pregnancy entails a fine immune and metabolic regulation of the maternal−fetal interaction to assist the energetic demands of the fetus where trophoblast cells have a central role. Maternal neutrophil functional shaping by trophoblast cells has been proposed though their metabolic conditioning during pregnancy has not been studied yet. Here, we explored the effects of trophoblast-derived factors on the metabolic rewiring of neutrophils from nonpregnant women and its impact on central functions like reactive oxygen species (ROS) production, neutrophil extracellular trap (NET) release, and migration. In parallel, the immunometabolic status and function of neutrophils isolated from pregnant women (16−20 weeks) was compared with nonpregnant age-matched control samples. Trophoblast-derived factors induced glucose uptake and lipid droplet accumulation without activating ROS production or NET release. Conditioned media from trophoblast cells also inhibited PMA-induced NETosis partly by impairing glucose uptake in neutrophils. In turn, neutrophils from pregnant women had increased basal ROS production, lipid accumulation, and glucose uptake compared to neutrophils from nonpregnant women, accompanied by a higher release of PMA-induced NETs. Interestingly, PMA-induced NETs was blocked by a fatty acid oxidation inhibitor in neutrophils from pregnant women indicating the contribution of fatty acid metabolism to neutrophil activity during pregnancy. Results are consistent with immunometabolic mechanisms underlying the functional shaping of neutrophils during pregnancy and point out the contribution of trophoblast-derived factors to their metabolic profiling. These findings provide novel immunometabolic clues to understand immune homeostasis maintenance during pregnancy and raise the clinical potential of monitoring neutrophil metabolism during normal and complicated pregnancies.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.