在欧洲及其他地区建立生物和物理回顾性剂量测定网络。

IF 1.9 4区 医学 Q2 BIOLOGY Journal of Radiation Research Pub Date : 2024-12-16 DOI:10.1093/jrr/rrae072
Elizabeth A Ainsbury
{"title":"在欧洲及其他地区建立生物和物理回顾性剂量测定网络。","authors":"Elizabeth A Ainsbury","doi":"10.1093/jrr/rrae072","DOIUrl":null,"url":null,"abstract":"<p><p>Ionizing radiation is of huge benefit to society; however, the risks of radiation overexposure in occupational settings or due to accidents or other incidents are of growing concern, not least due to the potential implications for exposed individuals in terms of acute high dose (e.g. ARS) and/or longer term low dose health effects such as cancer or genetic effects. This manuscript considers the state of the art for biological and 'fortuitous' physical retrospective dose estimation either in blood or in materials being carried by suspected exposed individuals, respectively, in support of routine and emergency radiation incident response, and the potential future progress in this fascinating and active field. In recent years, international experts in this field have engaged in active collaboration and networking on support of these goals, and continued efforts in this area will ensure the global community remains ready to respond to radiation accidents and incidents. In addition, over and above improved dose and exposure characterization in the field of radiation emergency medicine, scientific developments in biological markers may contribute to potential contributions to individualized or stratified risk estimation in molecular epidemiology to assess long term, low dose radiation risk; in personalized medical dosimetry for better justification and optimization for use of radiation in such settings, and even perhaps for potential future situations involving radiation exposure, for example protection of individuals traveling to space.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":"65 Supplement_1","pages":"i2-i5"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Networking in biological and physical retrospective dosimetry in Europe and beyond.\",\"authors\":\"Elizabeth A Ainsbury\",\"doi\":\"10.1093/jrr/rrae072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ionizing radiation is of huge benefit to society; however, the risks of radiation overexposure in occupational settings or due to accidents or other incidents are of growing concern, not least due to the potential implications for exposed individuals in terms of acute high dose (e.g. ARS) and/or longer term low dose health effects such as cancer or genetic effects. This manuscript considers the state of the art for biological and 'fortuitous' physical retrospective dose estimation either in blood or in materials being carried by suspected exposed individuals, respectively, in support of routine and emergency radiation incident response, and the potential future progress in this fascinating and active field. In recent years, international experts in this field have engaged in active collaboration and networking on support of these goals, and continued efforts in this area will ensure the global community remains ready to respond to radiation accidents and incidents. In addition, over and above improved dose and exposure characterization in the field of radiation emergency medicine, scientific developments in biological markers may contribute to potential contributions to individualized or stratified risk estimation in molecular epidemiology to assess long term, low dose radiation risk; in personalized medical dosimetry for better justification and optimization for use of radiation in such settings, and even perhaps for potential future situations involving radiation exposure, for example protection of individuals traveling to space.</p>\",\"PeriodicalId\":16922,\"journal\":{\"name\":\"Journal of Radiation Research\",\"volume\":\"65 Supplement_1\",\"pages\":\"i2-i5\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jrr/rrae072\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae072","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电离辐射给社会带来了巨大的利益;然而,在职业环境中或由于事故或其他事件造成的辐射过量风险日益引起人们的关注,这主要是由于辐射过量可能会对受辐照者造成急性高剂量(如 ARS)和/或长期低剂量健康影响(如癌症或遗传影响)。本手稿探讨了分别在疑似受照射者的血液或携带的材料中进行生物和 "偶然 "物理追溯剂量估算的技术现状,以支持常规和紧急辐射事件响应,以及这一令人着迷的活跃领域未来可能取得的进展。近年来,该领域的国际专家为支持这些目标开展了积极的合作和网络建设,该领域的持续努力将确保全球社会随时做好应对辐射事故和事件的准备。此外,除了改进辐射急救医学领域的剂量和照射特征描述外,生物标志物方面的科学发展可能有助于分子流行病学中的个性化或分层风险估计,以评估长期低剂量辐射风险;有助于个性化医疗剂量测定,以更好地证明在此类环境中使用辐射的合理性并进行优化,甚至可能有助于未来可能出现的涉及辐照的情况,例如保护前往太空旅行的个人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Networking in biological and physical retrospective dosimetry in Europe and beyond.

Ionizing radiation is of huge benefit to society; however, the risks of radiation overexposure in occupational settings or due to accidents or other incidents are of growing concern, not least due to the potential implications for exposed individuals in terms of acute high dose (e.g. ARS) and/or longer term low dose health effects such as cancer or genetic effects. This manuscript considers the state of the art for biological and 'fortuitous' physical retrospective dose estimation either in blood or in materials being carried by suspected exposed individuals, respectively, in support of routine and emergency radiation incident response, and the potential future progress in this fascinating and active field. In recent years, international experts in this field have engaged in active collaboration and networking on support of these goals, and continued efforts in this area will ensure the global community remains ready to respond to radiation accidents and incidents. In addition, over and above improved dose and exposure characterization in the field of radiation emergency medicine, scientific developments in biological markers may contribute to potential contributions to individualized or stratified risk estimation in molecular epidemiology to assess long term, low dose radiation risk; in personalized medical dosimetry for better justification and optimization for use of radiation in such settings, and even perhaps for potential future situations involving radiation exposure, for example protection of individuals traveling to space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
86
审稿时长
4-8 weeks
期刊介绍: The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO). Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal. Articles considered fall into two broad categories: Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable. Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences. Please be advised that JRR does not accept any papers of pure physics or chemistry. The journal is bimonthly, and is edited and published by the JRR Editorial Committee.
期刊最新文献
Characterization of acrylic phantom for use in quality assurance of BNCT beam output procedure. Cost-effectiveness analysis for multi adverse events of proton beam therapy for pediatric medulloblastoma in Japan. Clinical workload profile of medical physics professionals at particle therapy Centers: a National Survey in Japan. Stereotactic arrhythmia radioablation for ventricular tachycardia: a review of clinical trials and emerging roles of imaging. Features of internal absorbed dose microdistribution in biological tissue irradiated by 31SiO2 microparticles compared with dose microdistribution from exposure to 56MnO2 particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1