活性氧和氮的比例决定了细菌细胞死亡的类型。

IF 6.1 1区 生物学 Q1 MICROBIOLOGY Microbiological research Pub Date : 2025-03-01 Epub Date: 2024-12-09 DOI:10.1016/j.micres.2024.127986
Athanasios Nikolaou, Manuel Salvador, Ian Wright, Thomas Wantock, Gavin Sandison, Thomas Harle, Daniela Carta, Jorge Gutierrez-Merino
{"title":"活性氧和氮的比例决定了细菌细胞死亡的类型。","authors":"Athanasios Nikolaou, Manuel Salvador, Ian Wright, Thomas Wantock, Gavin Sandison, Thomas Harle, Daniela Carta, Jorge Gutierrez-Merino","doi":"10.1016/j.micres.2024.127986","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments. In this study, we exposed Gram-positive and Gram-negative bacteria to varying RONS ratios, mimicking what microbes may naturally encounter. A ratio in favour of RNS induced membrane depolarization and pore formation, resulting in an irreversible bactericidal effect. By contrast, ROS predominance caused membrane permeabilization and necrotic-like responses, leading to biofilm formation. Furthermore, bacterial cells exposed to more RNS than ROS activated metabolic processes associated with anaerobic respiration, DNA & cell wall/membrane repair, and cell signalling. Our findings suggest that the combination of ROS and RNS can be an effective alternative to inhibit bacteria, but only under higher RNS levels, as ROS dominance might foster bacterial tolerance, which in the context of AMR could have devastating consequences.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"127986"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ratio of reactive oxygen and nitrogen species determines the type of cell death that bacteria undergo.\",\"authors\":\"Athanasios Nikolaou, Manuel Salvador, Ian Wright, Thomas Wantock, Gavin Sandison, Thomas Harle, Daniela Carta, Jorge Gutierrez-Merino\",\"doi\":\"10.1016/j.micres.2024.127986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments. In this study, we exposed Gram-positive and Gram-negative bacteria to varying RONS ratios, mimicking what microbes may naturally encounter. A ratio in favour of RNS induced membrane depolarization and pore formation, resulting in an irreversible bactericidal effect. By contrast, ROS predominance caused membrane permeabilization and necrotic-like responses, leading to biofilm formation. Furthermore, bacterial cells exposed to more RNS than ROS activated metabolic processes associated with anaerobic respiration, DNA & cell wall/membrane repair, and cell signalling. Our findings suggest that the combination of ROS and RNS can be an effective alternative to inhibit bacteria, but only under higher RNS levels, as ROS dominance might foster bacterial tolerance, which in the context of AMR could have devastating consequences.</p>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":\"292 \",\"pages\":\"127986\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.micres.2024.127986\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2024.127986","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活性氧和氮物种(RONS)正在成为一种新型抗菌策略,以应对抗菌药耐药性(AMR)的惊人增长。RONS 可通过与细胞分子发生反应抑制细菌生长,损害重要的生物功能并导致细胞死亡。虽然已经对其作用机制进行了研究,但许多机制仍不清楚,尤其是在生物相关环境中。在这项研究中,我们将革兰氏阳性和革兰氏阴性细菌暴露在不同的 RONS 比率下,模拟微生物可能自然遇到的情况。有利于 RNS 的比例会诱导膜去极化和孔隙形成,从而产生不可逆的杀菌作用。相比之下,ROS 占主导地位会导致膜渗透和类似坏死的反应,从而形成生物膜。此外,细菌细胞暴露于比 ROS 更多的 RNS 时,会激活与厌氧呼吸、DNA 和细胞壁/膜修复以及细胞信号相关的代谢过程。我们的研究结果表明,ROS 和 RNS 的结合可以成为抑制细菌的有效替代方法,但只有在 RNS 水平较高的情况下才能实现,因为 ROS 占主导地位可能会助长细菌的耐受性,这在 AMR 的背景下可能会产生破坏性后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The ratio of reactive oxygen and nitrogen species determines the type of cell death that bacteria undergo.

Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments. In this study, we exposed Gram-positive and Gram-negative bacteria to varying RONS ratios, mimicking what microbes may naturally encounter. A ratio in favour of RNS induced membrane depolarization and pore formation, resulting in an irreversible bactericidal effect. By contrast, ROS predominance caused membrane permeabilization and necrotic-like responses, leading to biofilm formation. Furthermore, bacterial cells exposed to more RNS than ROS activated metabolic processes associated with anaerobic respiration, DNA & cell wall/membrane repair, and cell signalling. Our findings suggest that the combination of ROS and RNS can be an effective alternative to inhibit bacteria, but only under higher RNS levels, as ROS dominance might foster bacterial tolerance, which in the context of AMR could have devastating consequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
期刊最新文献
Phototactic signaling network in rod-shaped cyanobacteria: A study on Synechococcus elongatus UTEX 3055. Mechanism and nanotechnological-based therapeutics for tolerance and resistance of bacterial biofilms. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Antimicrobial effect of sulconazole in combination with glucose/trehalose against carbapenem-resistant hypervirulent Klebsiella pneumoniae persisters. Underground fires shape the structure of microbial communities and select for thermophilic bacteria through a temperature gradient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1