{"title":"iHDSel 软件:用价格方程和种群稳定指数检测与选择性扫描相匹配的基因组模式。以 SARS-CoV-2 为例。","authors":"Antonio Carvajal-Rodríguez","doi":"10.1093/biomethods/bpae089","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of methods have been developed and continue to evolve for detecting the signatures of selective sweeps in genomes. Significant advances have been made, including the combination of different statistical strategies and the incorporation of artificial intelligence (machine learning) methods. Despite these advances, several common problems persist, such as the unknown null distribution of the statistics used, necessitating simulations and resampling to assign significance to the statistics. Additionally, it is not always clear how deviations from the specific assumptions of each method might affect the results. In this work, allelic classes of haplotypes are used along with the informational interpretation of the Price equation to design a statistic with a known distribution that can detect genomic patterns caused by selective sweeps. The statistic consists of Jeffreys divergence, also known as the population stability index, applied to the distribution of allelic classes of haplotypes in two samples. Results with simulated data show optimal performance of the statistic in detecting divergent selection. Analysis of real severe acute respiratory syndrome coronavirus 2 genome data also shows that some of the sites playing key roles in the virus's fitness and immune escape capability are detected by the method. The new statistic, called <i>J<sub>HAC</sub></i> , is incorporated into the iHDSel (informed HacDivSel) software available at https://acraaj.webs.uvigo.es/iHDSel.html.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae089"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646571/pdf/","citationCount":"0","resultStr":"{\"title\":\"iHDSel software: The price equation and the population stability index to detect genomic patterns compatible with selective sweeps. An example with SARS-CoV-2.\",\"authors\":\"Antonio Carvajal-Rodríguez\",\"doi\":\"10.1093/biomethods/bpae089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A large number of methods have been developed and continue to evolve for detecting the signatures of selective sweeps in genomes. Significant advances have been made, including the combination of different statistical strategies and the incorporation of artificial intelligence (machine learning) methods. Despite these advances, several common problems persist, such as the unknown null distribution of the statistics used, necessitating simulations and resampling to assign significance to the statistics. Additionally, it is not always clear how deviations from the specific assumptions of each method might affect the results. In this work, allelic classes of haplotypes are used along with the informational interpretation of the Price equation to design a statistic with a known distribution that can detect genomic patterns caused by selective sweeps. The statistic consists of Jeffreys divergence, also known as the population stability index, applied to the distribution of allelic classes of haplotypes in two samples. Results with simulated data show optimal performance of the statistic in detecting divergent selection. Analysis of real severe acute respiratory syndrome coronavirus 2 genome data also shows that some of the sites playing key roles in the virus's fitness and immune escape capability are detected by the method. The new statistic, called <i>J<sub>HAC</sub></i> , is incorporated into the iHDSel (informed HacDivSel) software available at https://acraaj.webs.uvigo.es/iHDSel.html.</p>\",\"PeriodicalId\":36528,\"journal\":{\"name\":\"Biology Methods and Protocols\",\"volume\":\"9 1\",\"pages\":\"bpae089\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpae089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
iHDSel software: The price equation and the population stability index to detect genomic patterns compatible with selective sweeps. An example with SARS-CoV-2.
A large number of methods have been developed and continue to evolve for detecting the signatures of selective sweeps in genomes. Significant advances have been made, including the combination of different statistical strategies and the incorporation of artificial intelligence (machine learning) methods. Despite these advances, several common problems persist, such as the unknown null distribution of the statistics used, necessitating simulations and resampling to assign significance to the statistics. Additionally, it is not always clear how deviations from the specific assumptions of each method might affect the results. In this work, allelic classes of haplotypes are used along with the informational interpretation of the Price equation to design a statistic with a known distribution that can detect genomic patterns caused by selective sweeps. The statistic consists of Jeffreys divergence, also known as the population stability index, applied to the distribution of allelic classes of haplotypes in two samples. Results with simulated data show optimal performance of the statistic in detecting divergent selection. Analysis of real severe acute respiratory syndrome coronavirus 2 genome data also shows that some of the sites playing key roles in the virus's fitness and immune escape capability are detected by the method. The new statistic, called JHAC , is incorporated into the iHDSel (informed HacDivSel) software available at https://acraaj.webs.uvigo.es/iHDSel.html.